资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
第11页 / 共16页
第12页 / 共16页
第13页 / 共16页
第14页 / 共16页
第15页 / 共16页
第16页 / 共16页
亲,该文档总共16页全部预览完了,如果喜欢就下载吧!
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,When Efficient Model Averaging Out-Perform Bagging and Boosting,Ian Davidson,SUNY Albany,Wei,Ensemble Techniques,Techniques such as boosting and bagging are methods of combining models.,Used extensively in ML and DM seems to work well in a large variety of situations.,But model averaging is the“correct Bayesian method of using multiple models.,Does model averaging have a place in ML and DM?,What is Model Averaging?,Posterior,weighting,Class,Probability,Integration Over,Model Space,Averaging of class probabilities weighted by posterior,Removes model uncertainty by averaging,Prohibitive for large model spaces,such as decision trees,Efficient Model Averaging:PBMA and Random DT,PBMA(Davidson 04):parametric bootstrap model averaging,Use parametric model to generate multiple bootstraps computed from a single training set.,Random Decision Tree(Fan et al 03),Construct each trees structure randomly,Categorical feature used once in a decision path,Random threshold for continuous features.,Leaf node statistics estimated from data.,Average probability of multiple trees.,Our Empirical Study,Idea:When model uncertainty occurs,model averaging should perform well,Four specific but common situations when factoring in model uncertainty is beneficial,Class label noise,Many label problem,Sample selection bias,Small data sets,Class Label Noise,Randomly flip 10%of labels,Data Set with Many Classes,Biased Training Sets,See ICDM 2005 for a formal analysis,See KDD 2006 to look at estimating accuracy,See ICDM 2006 for a case study,Universe of Examples,Two classes:,red and green,red:f2f1,green:f2=f1,Unbiased and Biased Samples,Single Decision Tree,Unbiased 97.1%,Biased 92.1%,Random Decision Tree,Unbiased 96.9%,Biased 95.9%,Bagging,Unbiased 97.82%,Biased 93.52%,PBMA,Unbiased 99.08%,Biased 94.55,Boosting,Unbiased 96.405%,Biased 92.7%,Scope of This Paper,Identifies conditions where model averaging should outperform bagging and boosting.,Empirically verifies these claims.,Other questions:,Why does bagging and boosting perform badly in these conditions?,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6