资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
第11页 / 共27页
第12页 / 共27页
第13页 / 共27页
第14页 / 共27页
第15页 / 共27页
第16页 / 共27页
第17页 / 共27页
第18页 / 共27页
第19页 / 共27页
第20页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,小结与复习,第,25,章 概率初步,要点梳理,考点讲练,课堂小结,课后作业,小结与复习第25章 概率初步要点梳理考点讲练课堂小结课后作,1,一、事件的分类及其概念,要点梳理,事件,确定事件,随机事件,必然事件,不可能事件,1.,在一定条件下,必然发生,的事件,叫做必然事件;,2.,在一定条件下,不可能发生,的事件,叫做不可能事件;,3.,在一定条件下,可能发生也可能不发生,的事件,叫做随,机事件,.,一、事件的分类及其概念要点梳理事件确定事件随机事件必然事件不,2,1.,概率:,一般地,对于一个随机事件,A,,我们把刻画其发生可能性大小的数值,称为随机事件,A,发生的,概率,,记作,P,(,A,),.,二、,概率的概念,0,1,事件发生的可能性越来越大,事件发生的可能性越来越小,不可能事件,必然事件,概率的值,2.,1.概率:一般地,对于一个随机事件A,我们把刻画其发生可,3,三、随机事件的概率的求法,1.,当实验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,我们用大量重复试验中随机事件发生的稳定,频率来估计概率,.,频率与概率的关系,:两者都能定量地反映随机事件,可能性的大小,但频率具有随机性,概率是自身固有,的性质,不具有随机性,.,三、随机事件的概率的求法1.当实验的所有结果不是有限个,或,4,2.,概率的计算公式:,一般地,如果在一次试验中,有,n,种可能的结果,并且它们发生的可能性都相等,那么出现每一种结果的概率都是,.,如果事件,A,包括其中的,m,种可能的结果,那么事件,A,发生的概率,P,(,A,)=+,+,n,1,n,1,n,1,m,个,=,n,m,2.概率的计算公式:P(A)=+n1,5,当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用,列表法,.,一个因素所包含的可能情况,另一个因素所包含的可能情况,两个因素所组合的所有可能情况,即,n,在所有可能情况,n,中,再找到满足条件的事件的个数,m,最后代入公式计算,.,列表法中表格构造特点,:,当一次试验中涉及,3,个因素,或,更多的因素,时,怎么办,?,四、列表法,当一次试验要涉及两个因素,并且可能出现的结果数目较多时,6,当一次试验中涉及,2,个因素或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用“,树状图,”,.,树形图的画法,:,一个试验,第一个因数,第二个,第三个,如一个试验中涉及,2,个或,3,个因数,第一个因数中有,2,种可能情况,;,第二个因数中有,3,种可能的情况,;,第三个因数中有,2,种可能的情况,.,A,B,1,2,3,1,2,3,a,b,a,b,a,b,a,b,a,b,a,b,n=232=12,五、树状图法,当一次试验中涉及2个因素或更多的因素时,为,7,考点一 事件的判断和概率的意义,考点讲练,例,1,下列事件是随机事件的是(),A.,明天太阳从东方升起,B.,任意画一个三角形,其内角和是,360,C.,通常温度降到,0,以下,纯净的水结冰,D.,射击运动员射击一次,命中靶心,D,考点一 事件的判断和概率的意义考点讲练例1 下列事件是随,8,1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是 ”,的意思是,(,),A布袋中有2个红球和5个其他颜色的球,B如果摸球次数很多,那么平均每摸7次,就有2次摸中红球,C摸7次,就有2次摸中红球,D摸7次,就有5次摸不中红球,B,针对训练,1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是,9,2.,下列事件中是必然事件的是(),A,从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球,B,小丹的自行车轮胎被钉子扎坏,C,小红期末考试数学成绩一定得满,分,D,将油滴入水中,油会浮在水面上,D,2.下列事件中是必然事件的是()D,10,考点二 用列举法求概率,例,2,如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是(),A.B.C.D.,C,考点二 用列举法求概率 例2 如图,电路图上有四个开,11,例,3,如图所示,有3张不透明的卡片,除正面写有不同的数字外,其它均相同将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b,(1)写出k为负数的概率;,(2)求一次函数,y=kx+b,的图象经过,二、三、四象限的概率,.,例3 如图所示,有3张不透明的卡片,除正面写有不同的数字,12,解:(,1,)P(k为负数)=.,【,解析,】,(1)因为,1,,,2,,3中有两个负数,故k为负数的概率为 ;,(2)由于一次函数,y=kx+b,的图象经过二、三、四象限时,,k,,,b,均为负数,,所以在画树形图列举出,k,、,b,取值的所有情况后,从中找出所有k、b均为负数的情况,即可得出答案,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,解:(1)P(k为负数)=.【解析】(,13,(,2,)画树状图如右:,由树状图可知,,k,、,b,的取值共有,6,种情况,,其中,k,0,且,b,0,的情况有,2,种,,P,(一次函数,y=kx+b,的图象经过第二、三、四象限),=.,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,(2)画树状图如右:【获奖课件ppt】人教版概率初步_优,14,3.一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是(),A.B.C.D.,A,针对训练,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,3.一个袋中装有2个黑球3个白球,这些球除颜色外,大小,15,考点三,用频率估计概率,例,4,在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(),A,.,频率就是概率,B,.,频率与试验次数无关,C,.,概率是随机的,与频率无关,D,.,随着试验次数的增加,频率一般会越来越接近概率,D,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,考点三 用频率估计概率例4 在大量重复试验中,关于随机事,16,例,5,在一个不透明的布袋中,红色、黑色、白色的玻璃球共有,40,个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在,15,和,45,,,则口袋中白色球的个数最有可能是(,),A.24,个,B.18,个,C.16,个,D.6,个,C,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,例5 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40,17,4.,在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球如果口袋中装有个红球且摸到红球的概率为 ,那么口袋中球的总个数为_,解析:设口袋中球的总个数为,x,,,则摸到红球的概率为 ,,所以,x=,15,针对训练,15,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,4.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,18,考点五 用概率作决策,例,6,在一个不透明的口袋里分别标注,2,、,4,、,6,的,3,个小球(小球除数字外,其余都相同),另有,3,张背面完全一样,正面分别写有数字,6,、,7,、,8,的卡片,.,现从口袋中任意摸出一个小球,再从这,3,张背面朝上的卡片中任意摸出一张卡片,.,(,1,)请你用列表或画树状图的方法,表示出所有可能出现的结果;,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,考点五 用概率作决策例6 在一个不透明的口袋里分别标注2,19,解:,(,1,),列表如下,6,7,8,2,(,6,,,2,),(,7,,,2,),(,8,,,2,),4,(,6,,,4,),(,7,,,4,),(,8,,,4,),6,(,6,,,6,),(,7,,,6,),(,8,,,6,),卡片,小球,共有,9,种等可能结果;,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,解:(1)列表如下6782(6,2)(7,2)(8,2)4(,20,(,2,)小红和小莉做游戏,制定了两个游戏规则:,规则,1,:若两次摸出的数字,至少有一次是“,6,”,小红赢;否则,小莉赢;,规则,2,:,若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢,.,小红想要在游戏中获胜,她会选择哪一条规则,并说明理由,.,规则,1,:,P,(,小红赢,),=,;,规则,2,:,P,(,小红赢,),=,,小红选择规则,1.,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,【,获奖课件,ppt】,人教版,概率初步,_,优秀课件,1-,课件分析下载,(2)小红和小莉做游戏,制定了两个游戏规则:规则1:P(小红,21,5.A,、,B,两个小型超市举行有奖促销活动,顾客每购满,20,元就有一次按下面规则转动转盘获奖机会,且两超市奖额等同,.,规则是:,A,超市把转盘甲等分成,4,个扇形区域、,B,超市把转盘乙等分成,3,个扇形区域,并标上了数字(如图所示);顾客第一回转动转盘要转两次,第一次与第二次分别停止,后指针所指数字之和为奇数时,就获奖(若指针停在等分线上,,那么重转一次,直到指针指向,某一份为止),.,1,1,2,2,3,3,4,甲,乙,针对训练,【,获奖课件,ppt】,人教版,概率初步,_,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6