资源预览内容
第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
第9页 / 共17页
第10页 / 共17页
第11页 / 共17页
第12页 / 共17页
第13页 / 共17页
第14页 / 共17页
第15页 / 共17页
第16页 / 共17页
第17页 / 共17页
亲,该文档总共17页全部预览完了,如果喜欢就下载吧!
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Section 6.2Calculating CoefficientsOf Generating Functions,Aaron Desrochers,Ben Epstein,Colleen Raimondi,1,This chapter is about developing algebraic techniques for calculating the coefficients of generating functions.,All methods seek to reduce a given generating function to a simple binomial type generating function,or a product of binomial-type generating functions,.,Calculating Coefficients Of,Generating Functions,2,1),2),3),4),5),If h(x)=f(x)g(x),where f(x)and g(x),then,h(x),Polynomial Expansions:,3,The rule for multiplication of generating functions in Eqn.(6)is simply the standard formula for polynomial multiplication.,If h(x)=f(x)g(x),where f(x)and g(x),then,h(x),4,Identity(1)can be verified by polynomial“long division.,We restate it,multiplying both sides of Eq.(1)by,As,We verify that the product of the right-hand side is by“long multiplication,1,1),5,If m is made infinitely large,so that becomes the infinite series then the multiplication process will yield a power series in which the coefficient of each is zero.,We conclude that ()=1,Numerically,this equation is valid for ;the“remainder term,Goes to zero as m becomes infinite.,Dividing both sides of this equation by(1 X)yields identity(2).,2),1),6,Expansion(3),the binomial expansion was explained at the start,of section 6.1.Expansion(4)is obtained from(3)by expanding,3),7,For identity 5,(1,x,),-n,=(1+,x+x,2,+),n,Since =(1+,x+x,2,+)(eq.2),Let us determine the coefficient in equation(7)by counting the number of formal products whose sum of exponents is,r,if,e,i,represents the exponent of the,i,th term in a formal product,the the number of formal products whose exponents sum to,r,is the same as the number of integer solutions to the equation,In example 5,section 5.4 we showed that the number of nonnegative integer solutions to this equation is C(,r,+,n,1,r,),so the coefficient in eqn(7)is C(,r,+,n,1,r,).This verifies expansion(5).,5),2),1-,x,1,1-,x,1,n,8,With formulas(1)and(6)we can determine the coefficients of a variety of generating functions:first,perform algebraic manipulations to reduce a given generating function to one of the forms or a product of two such expansions,then use expansions(3)and(5)and the product rule(6)to obtain any desired coefficient.,If h(x)=f(x)g(x),where f(x)and g(x),then,h(x),1),3),5),9,Example 1,Find the coefficient of,To simplify the expression,we extract from each polynomial factor and the apply,identity(2).,Thus the coefficient of is the coefficient of,x,16,in,x,10,(1-,x,),5,i.e.,the,x,6,term in(1-,x,),5,is multiplied by to become the,x,16,term in,x,10,(1-,x,),5,10,Example 1 continued,From expansion(5)we see that the coefficient of,More generally,the coefficient of x,r,in,5),11,Example 2,(1+,x,),19,=1+,x,+,x,2,+,x,r,+,x,19,(),(),(),(),19,19,19,19,19,1,2,r,Use generating functions to find the number of ways to collect$15 from 20 distinct people if each of the first 19 people can give a dollar(or nothing)and the twentieth person can giver either$1 or$5(or nothing).,The generating function for the number of ways to collect,r,dollars from these people is(1+,x,),19,(1+,x+x,5,).We want the coefficient of,x,15,.The first part of this generating function has the binomial expansion,If we let,f,(,x,)be this first polynomial and let,g,(,x,)=1+,x,+,x,5,then we can use Eq.(6)to calculate the coefficient of,x,15,in,h,(,x,)=,f,(,x,),g,(,x,).Let,a,r,be the coefficient of,x,r,in,f,(,x,)in,f,(,x,)and,b,r,the coefficient of,x,r,in,g,(,x,).We know that,a,r,=and that,b,0,=,b,1,=,b,5,=1(other,b,i,s are zero).,(),19,r,If h(x)=f(x)g(x),where f(x)and g(x),then,h(x),12,Example 2 continued,Then the coefficient of of,x,15,in,h,(,x,)is,a,15,b,0,+,a,14,b,1,+,a,13,b,2,+,a,0,b,15,Which reduces to,a,15,b,0,+,a,14,b,1,+,a,10,b,5,Since,b,0,b,1,b,5,are the only nonzero coefficients in,g,(,x,).Substituting the values of the various,a,s and,b,s in Eq.(6),we have,(),19,15,x 1+x 1+x 1=+.,(),19,14,(),19,10,(),19,15,(),19,14,(),19,10,If h(x)=f(x)g(x),where f(x)and g(x),then,h(x),13,Class Problem,How many ways are there to select 25 toys from seven types of toys with between two and six of each type?,1),2),3),4),5),If h(x)=f(x)g(x),where f(x)and g(x),then,h(x),14,Class Problem(continued),The generating function for a,r,the number of ways to select r toys from seven types with between 2 and 6 of each type,is,(,x,2,+,x,3,+,x,4,+,x,5,+,x,6,),7,We want the coefficient of x,25,.We extract x,2,from each factor to get,x,2,(1+,x,+,x,2,+,x,3,+,x,4,),7,=,x,14,(1+,x,+,x,2,+,x,3,+,x,4,),7,Now reduce our problem to finding the coefficient of,x,25-14,=,x,11,in (1+,x,+,x,2,+,x,3,+,x,4,),7,.Using identity(1),we can rewrite this generating function as,(1+,x,+,x,2,+,x,3,+,x,4,),7,=(1-,x,5,),7,(),(),1-,x,5,1-,x,1-,x,1,7,7,15,Class Problem(continued),Let,f,(,x,)=(1-,x,5,),7,and,g,(,x,)=(1-,x,5,),-7,.By expansions(4)and(5),respectively,we have,f,(,x,)=(1-,x,5,),7,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6