单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,14.1 轴对称,(2),蛟河十中 初二备课组,下面这些图形是不是轴对称图形?为什么?,是,是,是,不是,知识回顾,判断题:,1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。(),2、正方形只有两条对称轴。(),选择题:,1、长方形有()条对称轴。,A.1 B.2 C.3,2、,下面的数字()是轴对称图形。,A.3 B.9 C.7,A,B,操作题:(,画出下面图形的对称轴,),判断题:,选择题:,操作题:(,画出下面图形的对称轴,),1、飞机图不一定是轴对称图形。(),2、半圆有无数条对称轴。(),1、有()条对称轴。,A.5 B.10 C.1,2、,下面汉字()是轴对称图形。,A.,字,B.,小,C.,日,A,C,14.1 轴对称,(2),蛟河十中 初二备课组,学习目标,:,1,、探索轴对称的基本性质。,2,、理解对应点连线段被对称轴垂直平分以及轴对称的其他性质。,3,、理解线段的垂直平分线性质以及性质的可逆性,会用定理解题。,自学内容和要求,:,看书,31-33,页内容回答下列问题,:,1,、什么叫线段的垂直平分线,?,2,、图形轴对称的性质是什么,?,3,、什么叫轴对称图形的对称轴,?,4,、观察,32,页探究有什么发现,?,5,、归纳总结线段垂直平分线的性质及逆定理。,6,、,32,页探究你得到什么结论。,A,A,B,C,C,B,观察与思考,:,(根据右图填空),1,、,AB=,;,AC=,;,B=,;,AED=,;,五边形,ABCDE,五边形,A,B,C,D,E,;,由此可以想到:,轴对称的两个图形一定是,形;它们的对应线段,,对应角,。,2,、,A,;,B,;,;,由此可以想到:,对称轴,MN,对称点的连线段。,D,E,E,D,B,B,A,A,C,C,D,D,N,M,M,N,AB,AC,B,AE D,如图,线段,被,直线,m,垂直,且,平分,,,直线,m,叫做线段的,垂直平分线,定义:经过线段的中点且与之垂直的直线就叫_,也叫,中垂线,如果两个图形关于某条直线对称,那么对称轴是对称点的连线的垂直平分线;即对称点的连线段被对称轴垂直平分。,垂直平分线,轴对称的性质:,求证,:,线段垂直平分线上的点 到这条线段 的两端点的距离相等,定理,:,线段垂直平分线上的点 到这条线段 两端点的距离相等。,已知:直线垂直平分线段,是上一点,求证:,求证,:,到一条线段的两端点的距离相等的点在这条线段的垂直平分线上。,定理,:,到一条线段的两端点距离相等的点在这条线段的垂直平分线上。,已知:,求证:点在线段垂直平分线上。,N,M,右图中,,ABC,与,FED,关于直线,m,对称,由轴对称的性质可以得到:,m,是_的垂直平分线,O,由,中垂线性质,还可得到的结论有:,理由是:,P,练一练,在,ABC,PM,QN,分别垂直平分,AB,AC,,则,若,BC=10cm,则,APQ,的周长,=_cm,若,BAC=100,则,PAQ=_,10cm,20,0,解:,你知道图中对应线段、延长线的交点会在什么位置吗?由此,你想到了什么?,已知图中的两个三角形关于直线,m,对称。,图中点,M,的对称点在哪呢?,M,拓广探索,