资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,确定圆的条件,(2),已知条件,结论,1.,直接证明的两种基本证法:,综合法和分析法,2.,这两种基本证法的推证过程和特点:,由因导果,执果索因,综合法,分析法,结论,已知条件,复 习,A,、,B,、,C,三个人,,A,说,B,撒谎,,B,说,C,撒谎,,C,说,A,、,B,都撒谎。则,C,在撒谎吗?为什么?,情境导入,学习目标,1.,体会反证法的含义,知道证明一个命,题除用直接证法外,还有间接证法。,2.,了解用反证法证明命题的一般步骤。,实验与探究,1.,如果,A,、,B,、,C,三点在同一条直线上,经过点,A,、,B,、,C,能作出一个圆吗?,2.,为什么过同一直线上的三个点不能作圆?怎样证明这个结论?,在证明一个命题时,有时,先假设命题不成立,从,这样的,假设出发,经过推理,得出,和已知条件矛盾,或者与定义,公理,定理等,矛盾,从而得出,假设命题不成立是错误的,即所求证的命题正确。这种证明方法叫做,反证法,。,归纳总结,反证法的证明过程:,否定结论,假设命题的结论不成立;,肯定结论,由矛盾结果,断定反设不成立,从而,肯定原结论成立。,推出矛盾,从假设出发,经过一系列正确的推理,,得出,矛盾,;,归纳总结,已知:如图,直线,a,b,被直线,c,所截,,ab,求证:,1=2,精讲点拨,精讲点拨,已知,:,如图,ac,bc,求证:,a b,a,b,c,用,反证法,证明(填空):,在三角形的内角中,至少有一个角大于或等于,已知,:,如图,,,是的内角,求证:,中至少有一个角大于或等于度,证明:假设所求证的结论不成立,即,,,,,则,这与,矛盾,所以假设命题,,所以,所求证的结论,跟踪练习,1.,什么是反证法?,2.,用反证法证明一个命题的步骤:,(,1,)否定结论,(,2,)推出矛盾,(,3,)肯定结论,课堂小结,确定二次函数的表达式,学习目标,1,、会利用待定系数法求二次函数的表达式;(重点),2,、能根据已知条件,设出相应的二次函数的表达式的形式,较简便的求出二次函数表达式。(难点),课前复习,思考,二次函数有哪几种表达式?,一般式:,y=ax,2,+bx+c,(a0),顶点式:,y=a(x-h),2,+k,(a0),交点式:,y=a(x-x,1,)(x-x,2,),(a0),例题选讲,解:,所以,设所求的二次函数为,y=a(x,1),2,-6,由条件得:,点,(2,3),在抛物线上,,代入上式,得,3=a,(,2+1,),2,-6,得,a=1,所以,这个抛物线表达式为,y=(x,1),2,-6,即:,y=x,2,+2x,5,例,1,例题,封面,因为二次函数图像的顶点坐标是,(,1,,,6,),,已知抛物线的顶点为(,1,,,6,),与轴交点为,(,2,,,3,)求抛物线的表达式?,例题选讲,解:,设所求的二次函数为,y=ax,2,+bx+c,将,A,、,B,、,C,三点坐标代入得:,a-b+c=6,16a+4b+c=6,9a+3b+c=2,解得:,所以:这个二次函数表达式为:,a=1,b=-3,c=2,y=x,2,-3x+2,已知点,A,(,1,6,)、,B,(,2,3,)和,C,(,2,7,),,求经过这三点的二次函数表达式。,o,x,y,例,2,例题,封面,例题选讲,解:,所以设所求的二次函数为,y=a(x,1)(x,1,),由条件得:,已知抛物线与,X,轴交于,A,(,1,,,0,),,B,(,1,0,),并经过点,M,(,0,1,),求抛物线的表达式?,y,o,x,点,M(0,1),在抛物线上,所以,:,a(0+1)(0-1)=1,得:,a=-1,故所求的抛物线表达式为,y=,-,(x,1)(x-1),即:,y=,x,2,+1,例题,例,3,封面,因为函数过,A,(,1,,,0,),,B,(,1,0,),两点,:,小组探究,1,、已知二次函数对称轴为,x=2,,且过(,3,,,2,)、(,-1,10,)两点,求二次函数的表达式。,2,、已知二次函数极值为,2,,且过(,3,,,1,)、,(,-1,1,)两点,求二次函数的表达式。,解:设,y=a(x-2),2,-k,解:设,y=a(x-h),2,+2,例题选讲,有一个抛物线形的立交桥拱,这个桥拱的最大高度,为,16m,,跨度为,40m,现把它的图形放在坐标系里,(,如图所示,),,求抛物线的表达式,例,4,设抛物线的表达式为,y=ax,2,bx,c,,,解:,根据题意可知,抛物线经过,(0,,,0),,,(20,,,16),和,(40,,,0),三点,可得方程组,通过利用给定的条件,列出,a,、,b,、,c,的三元,一次方程组,求出,a,、,b,、,c,的值,从而确定,函数的解析式,过程较繁杂,,评价,封面,练习,例题选讲,有一个抛物线形的立交桥拱,这个桥拱的最大高度,为,16m,,跨度为,40m,现把它的图形放在坐标系里,(,如图所示,),,求抛物线的表达式,例,4,设抛物线为,y=a(x-20),2,16,解:,根据题意可知,点,(0,,,0),在抛物线上,,通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活,评价,所求抛物线表达式为,封面,练习,用待定系数法求函数表达式的一般步骤,:,1,、设出适合的函数表达式;,2,、把已知条件代入函数表达式中,得到关于待定系数的方程或方程组;,3,、解方程(组)求出待定系数的值;,4,、写出一般表达式。,课堂小结,求二次函数表达式的一般方法:,已知图象上三点或三对的对应值,,通常选择一般式,已知图象的顶点坐标、对称轴或和最值,通常选择顶点式,已知图象与,x,轴的两个交点的横,x,1,、,x,2,,,通常选择交点式。,y,x,o,封面,确定二次函数的表达式时,应该根据条件的特点,恰当地选用一种函数表达式。,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6