,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,ppt课件完整,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,ppt课件完整,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,ppt课件完整,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,ppt课件完整,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,二级,三级,四级,五级,ppt课件完整,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,二级,三级,四级,五级,ppt课件完整,*,六年级数学下册,1,ppt课件完整,六年级数学下册1ppt课件完整,一副牌,取出大小王后,一共,4,种花色,你们,5,人每人随意抽一张。,结果会有哪些情况?,一、游戏引入,2,ppt课件完整,一副牌,取出大小王后,一共4种花色,你们5人每人随意抽一张。,总有一种花色,至少是两张。,这句话如何理解?,3,ppt课件完整,总有一种花色,至少是两张。这句话如何理解?3ppt课件完整,把,3,枝铅笔放在,2,个文具盒里,可以怎么放,有几种方法?你有什么发现?,不管怎么放,总有一个文具盒里至少放进了,2,枝铅笔,.,试一试:,4,ppt课件完整,把3枝铅笔放在2个文具盒里,可以怎么放,有几种方法?你有,例,1,二、合作探究(,1,):,5,ppt课件完整,例1二、合作探究(1):5ppt课件完整,小组合作验证:,三人操作、一人记录,1.找一找,一共有几种情况?2.总有一个杯子里至少有几根小棒?,1,、分一分,枚举法,6,ppt课件完整,小组合作验证:1、分一分枚举法6ppt课件完整,第一种情况,0,0,7,ppt课件完整,第一种情况007ppt课件完整,第二种情况,0,8,ppt课件完整,第二种情况08ppt课件完整,第三种情况,0,9,ppt课件完整,第三种情况09ppt课件完整,第四种情况,10,ppt课件完整,第四种情况10ppt课件完整,0,0,0,0,11,ppt课件完整,000011ppt课件完整,0,0,0,0,不管怎么放,,总有,一个文具盒里,至少,放进,2,枝铅笔。,请同学们观察不同的摆法,能发现什么?,12,ppt课件完整,0000不管怎么放,总有一个文具盒里至少放进2枝铅笔。请同学,0,0,0,0,13,ppt课件完整,000013ppt课件完整,不管怎么放,总有,一个文具盒里,至少,有,2,枝铅笔。,14,ppt课件完整,不管怎么放总有一个文具盒里至少有2枝铅笔。14ppt课件完整,2.,分一分:,如果我们把,4,支,铅笔看成是数字,4,,把,3,个笔筒里的铅笔的数量看成是要分解成的,3,个数,,4,和这三个数有什么关系?怎样分?,不管怎么放,总有一个笔筒里至少有,2,支,铅笔,.,分解数法,4,4,0,0,4,3,1,0,4,2,1,1,4,2,2,0,15,ppt课件完整,2.分一分:如果我们把4支铅笔看成是数字4,把3个笔,3.,算一算:,我们能不能找到一种更为直接的方法,只摆放一种情况,,也能得到上面的结论呢?想一想,可以小组内交流一下,.,不管怎么放,总有一个笔筒里至少有,2,支,铅笔,.,至少数,=1+1,平均分法,16,ppt课件完整,3.算一算:我们能不能找到一种更为直接的方法,只摆放一种情况,把,5,支铅笔放在,3,个笔筒里,会有什么结果呢?,这样分实际上是怎样在分?怎样列式?,平均分,二、合作探究(,2,):,至少数,=1+1,17,ppt课件完整,把5支铅笔放在3个笔筒里,会有什么结果呢?这样分实际上是怎,P68,页:,5,只鸽子飞进了,3,个鸽笼,总有一个鸽笼至少飞进了,2,只鸽子。为什么?,做一做:,18,ppt课件完整,P68页:5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只,二、合作探究(,3,):,例,2,:,把,7,本书放进,3,个抽屉,不管怎么放,总有,1,个抽屉里至少有,3,本书。为什么呢?,为什么会有这样的结果?,这样分实际上是怎样在分?,平均分,怎样列式?,至少数,=2+1,19,ppt课件完整,二、合作探究(3):例2:把7本书放进3个抽屉,不管怎么放,,1.,把,8,本书放进,3,个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?,2.,把,10,本书放进,3,个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?,3.,把,12,本书放进,3,个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?,三、思考并回答:,3,本,4,本,4,本,20,ppt课件完整,1.把8本书放进3个抽屉里,不管怎么放,总有一个抽,“物体数,鸽巢数,=,商数,余数”,整除时:“至少数,=,商数”,不能整除时:“至少数,=,商数,+1”,小结:“鸽巢问题”的计算方法,21,ppt课件完整,“物体数鸽巢数=商数余数”小结:“鸽巢问题”的计算方,有,kn+b(0,bn,,,k,、,n,、,b,为整数,),支,笔,放进,n,个笔筒,,(,1,)当,b=0,时,总有一个笔筒里至少,有,支笔,.,(,2,)当,b0,时,总有一个笔筒里至少,有,支笔;,鸽巢(抽屉)原理:,k,k+1,22,ppt课件完整,有kn+b(0bn,k、n、b为整数)支笔,放进n个,1.,把,25,只小兔子关在,5,个笼子里,至少有几只兔子要关在同一个笼子里,?,2.,我班男生有,30,人,至少有()名男生的生日是在同一个月。,3.,任意,40,人中,总有至少几个人的属相相同?,四、比一比、赛一赛、看谁算得快,:,3,5,只,4,人,23,ppt课件完整,1.把25只小兔子关在5个笼子里,至少有几只兔子要,1,、,5,个人坐,4,把椅子,总有一把椅子上至少坐,2,人。为什么?,5,4,1,(个),1,(个),1,1,2,(个,),五、知识应用,24,ppt课件完整,1、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?5,2,、随意找,13,位学生,他们中至少有,2,个人的属相相同。为什么?,1312,1,(个),1,(个),1,1,2,(个),25,ppt课件完整,2、随意找13位学生,他们中至少有2个人的属相相同。为什么?,六1班有30名同学,他们都订阅甲、乙、丙三种报纸中的一种、二种或三种。至少有多少名同学订阅的报纸相同?,六、知识拓展,你知道有多少种不同的订阅方法么?,26,ppt课件完整,六1班有30名同学,他们都订阅甲、乙、丙三种报纸中的一种、二,最先发现这些规律的人是谁呢?他就是德国数学家“狄里克雷”,后来人们为了纪念他从这么平凡的事情中发,现的规律,就把这个规律用他,的名字命名,叫“狄里克雷原理”,,又把它叫做“鸽巢原 理”,还把,它叫做“抽屉原理”。,你知道吗?,27,ppt课件完整,最先发现这些规律的人是谁呢?他就是德国数学家“狄里,分享收获:,数学知识:,1.,鸽巢问题;,2.“,物体数,抽屉数,=,商数,余数”,不能整除时:“至少数,=,商数,+1”,;,整除时:“至少数,=,商数”,数学方法:,1.,枚举法;,2.,分解数法;,3.,平均分法,数学思想:,1.,数形结合;,2.,数学建模,28,ppt课件完整,分享收获:数学知识:1.鸽巢问题;28ppt课件完整,作业,第,71,页练习十三,第,2,题、第,3,题。,29,ppt课件完整,作业29ppt课件完整,感谢亲观看此幻灯片,此课件部分内容来源于网络,,如有侵权请及时联系我们删除,谢谢配合!,30,感谢亲观看此幻灯片,此课件部分内容来源于网络,30,感谢亲观看此幻灯片,此课件部分内容来源于网络,,如有侵权请及时联系我们删除,谢谢配合!,感谢亲观看此幻灯片,此课件部分内容来源于网络,,