资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,一元一次方程及其解法复习,1,、方程 是一元一次方程,则,a,和,m,分别为,-,(),A 2,和,4,,,B,2,和,4,,,C 2,和,4,,,D,2,和,4,。,2,、若关于,x,的方程 是一元一次方程,那么,m,的值能确定吗,?,是多少,?,3,、已知关于,x,的方程,与方程 有相同的解,求,a,的值。,B,解方程,解:去分母,得,2,(,-2-a)-3(2-a)=-2,去括号,得,-4-2a-6-a=-2,移 项,得,-2a-a=-2-4-6,合并同类项,得,-3a=-12,不对,1,、下面方程的解法对吗?若不对,请改正,。,找一找,系数化为,1,,得,a=1/4,一听就懂,一做就错,查找错误,分析错因,反思整改,轻轻松松解方程,高高兴兴得答案,问题,寻求,策略,解决,问题,解下列方程,解:方程两边同时乘以 ,,得,系数,倒数,a,x=,b,型方程,(,a,,,b,为常数),具体方法:,(1),、两边都除以,a,(2),、两边都乘以,(a 0),未知数的,系数化为,1,依据:,等式性质,2,X,X,解:,5x-3x=4,移项,移项要,变号,等式性质,1,2x=4,x=2,在括号中填上变形名称。,(),依据:,下列移项过程是否正确?,5x=4-2x,移项得:,5x+2x=-4,4x-2=3x+7,移项得:,4x+3x=7+2,3-2x=4x-5,移项得:,3+5=4x+2x,不移项,不变号,移项,变号,灵活,移项,越过等号叫,移项,移了项才变号。,正确,去括号:,4x-2x-2=8,下列方程的变形过程是否正确?,4x-2,(,x-1,),=8,去括号:,2x-4-12x+10=9,注意,变号,防止,漏乘,下列方程,去分母后的结果是(),A,、,3,(,3x-1,),-,(,5+2x,),=x,B,、,9x-3-5+2x=6x,D,、,3,(,3x-1,),-,(,5+2x)=6x,C,、,9x-1-5-2x=x,D,去分母时要注意什么?,每项都要乘,,分子添括号,等式性质,2,依据:,小明和小刚在解下列方程时发生了争论:,小明认为:分母先化为整数,得,而小刚认为:等号右边的,1,在分母化整数,时保持不变,并且等号左边的第二个式子,只要分子分母同时乘以,10,就够了。,你能对这两位同学的争论做出评论吗?,小明反驳到:不是说每一项都要乘吗?,分母化整数,要注意什么?,分数的基本性质,与分子分母有关,其他项无关,;,而,去分母时,每一项都要乘。,分母化整数,依据:,(),(),(),(),(),去分母,去括号,移 项,合并同类项,未知数系数化为,1,解:,(),分母化整数,括号中写出,变形名称,解一元一次方程的一般步骤:,步 骤,注意事项,去分母,去括号,移项,合并同类项,系数化为,1,注意变号,防止漏乘,移项要变号,没移不变号,系数相加减,字母指数不要变,除以系数或乘以系数的倒数,分母化整数,每项都要乘,分子添括号,与分子分母有关,其他项无关,2,、自我检测:解下列方程(,5,分钟),答案:,四人小组合作、诊断错误,(,5,分钟),(由组长批改并汇报整组错误情况),小组讨论、诊断错误,(,5,分钟),(由组长批改并汇报整组错误情况),错误,1,(变形名称):,;,注意事项:,。,错误,2,(变形名称):,;,注意事项:,。,其他错误,:,;,注意事项,:,。,小彬解方程 ,,去分母时方程左边的,1,没有乘以,10,,由此求得方程的解为,x=4,。试求,a,的值,并正确求出方程的解。,(将错就错法),解:小彬去分母得:,2,(,2x-1,),+1=5,(,x+a,),将,x=4,代入上面的方程得:,a=-1,X=13,将,a=-1,代回方程:,探索乐园,1,、若一个正数的平方根是,2x-3,和,1+4x,你能求出正数吗,?,2,、设,k,为整数,且关于,x,的方程,kx=6-2x,的解为自然数,求,k,的值。,通过这节课的学习,,谈谈你的最大收获?,解下列方程,:,练一练,1,3,1,2,4,2,),4,(,+,-,=,+,y,y,5,.,2,3,1,4,.,0,3,.,0,2,.,0,),5,(,x,x,-,=,-,-,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6