,静力学基本方程及其应用,液压传动与控制,液体静力学,研究内容:研究液体处于静止状态的力学规律和这些规律的实际应用。,静止液体:指液体内部质点之间没有相对运动,液体整体完全可以象刚体一样做各种运动。,作用于液体上的力:,定义:静止液体单位面积上所受的,法向力,。,(切向力?拉力?),若法向力均匀作用在面积A上,则压力为:,一、,液体的静压力及特性,(1)液体静压力的方向总是沿着作用面的内法线方向。,(2)静止液体中任何一点所受到各个方向压力都相等。,液体静压力特性:,二、,液体静力学基本方程,取研究对象:微圆柱体,受力分析:,静力学基本方程:,方程推导,方程分析,静止液体中任意点的静压力是液体表面上的压力和,液柱重力所产生的压力之和。,静止液体内的压力随液体距液面的深度变化呈线性,规律分布。,在连通器中,同一深度上各点的压力相等(等压面)。,A,静力学基本方程:,方程分析,坐标变换后的另一种形式:,h=z,0,-z,物理意义:能量守恒,(,压力能和势能,),的守恒,【例,1,】如图所示,容器内盛有油液。已知油的密度,=,900kg/m,3,,活塞上的作用力F,=,1,000N,活塞的面积A,=,1,10,3,m,2,,假设活塞的重量忽略不计。问活塞下方深度为h,=,0.5m处的压力等于多少?,解:活塞与液体接触面上的压力均匀分布,有,根据静力学基本方程,深度为,h,处的液体压力为,结论:液体在受外界压力作用的情况下,液体自重所形成的那部分压力,gh,相对很小,在液压系统中常可忽略不计。,因而可近似认为整个液体内部的压力是相等的。,三、帕斯卡原理,在密闭容器内,施加于静止液体上的压力将以,等值同时,传到,液体内部所有,各点。,容器内的液体各点压力为,【例,2,】,图所示为相互连通的两个液压缸,已知大缸内径,D,=100mm,,小缸内径,d,=20mm,,大活塞上放一质量为,5 000kg,的物体。试求在小活塞上所加的力,F,有多大才能使大活塞顶起重物?,解:物体的重力为,G,=,mg,=,5,000kg,9.8m/s,2,=,49,000kg,m/s,2,=,49,000N,根据帕斯卡原理,因外力产生的压力在两缸中均相等,即,应用实例,结论:液压系统的工作压力取决于负载,且随着负载的变化而变化。,1.,只要,A,1,/A,2,足够大,用很小的力,F,2,就可产生很大的力,F,1,。,液压千斤顶和水压机即按此原理制成。,2.,若缸,1,活塞上无负载,则在略去活塞重量及其它阻力时,不论怎样推动缸,2,的活塞,都不能在液体中形成压力。,缸内压力,:,表,明,帕斯卡原理,