,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,Institute of Computing Technology,Chinese Academy of Sciences,CNN,的早期历史,卷积神经网络,CNN,K.,Fukushima,“Neocognitron:A self-organizing neural network model for,a mechanism,of pattern recognition unaffected by shift in position,”,Biological,Cybernetics,vol.36,pp.193202,1980,Y.LeCun,B.Boser,J.S.Denker,D.Henderson,R.E.Howard,W.Hubbard,and L.D.Jackel,“Backpropagation applied to handwritten zip code recognition,”Neural Computation,vol.1,no.4,pp.541551,1989,Y.Le Cun,L.Bottou,Y.Bengio,and P.Haffner,“Gradient-based learning applied to document recognition,”Proceedings of the IEEE,vol.86,no.11,pp.22782324,1998,1,DL,时代的,CNN,扩展,A Krizhevsky,I Sutskever,GE,Hinton,.ImageNet,classification with deep convolutional neural,networks.NIPS2012,Y.Jia et al.Caffe,:Convolutional Architecture for Fast Feature,Embedding.ACM MM2014,K.,Simonyan,A.Zisserman.Very,deep convolutional networks for large-scale image,recognition,.,arXiv,preprint arXiv:1409.1556,2014,C.Szegedy,W.,Liu,Y.,Jia,P.,Sermanet,S.,Reed,D.,Anguelov,D.,Erhan,V.Vanhoucke,A.Rabinovich.Going,deeper with,convolutions.,CVPR2015(&,arXiv:1409.4842,2014),2,卷积,示例,3,卷积,形式化,积分形式,常用表达式,离散,形式,一维情况,二维,情况,K,称为,kernel,4,卷积,why?,1.sparse interactions,有限,连接,,Kernel,比输入小,连接数少很多,学习难度小,计算复杂度低,m,个,节点与,n,个节点相连,O(mn),限定,k(m),个节点与,n,个节点相连,则为,O(kn),5,卷积,why?,1.sparse interactions,有限,连接,,Kernel,比输入小,连接数少很多,学习难度小,计算复杂度低,m,个,节点与,n,个节点相连,O(mn),限定,k(m),个节点与,n,个节点相连,则为,O(kn),6,卷积,why?,1.sparse interactions,有限,(,稀疏,),连接,Kernel,比输入小,局部连接,连接数少很多,学习难度小,计算复杂度低,层级感受野(生物启发),越高层的神经元,感受野越大,7,卷积,why?,2.Parameter Sharing,(参数共享),Tied weights,进一步极大的缩减参数数量,3.Equivariant representations,等变性,配合,Pooling,可以获得平移不变性,对,scale,和,rotation,不具有此,属性,8,CNN,的基本结构,三,个步骤,卷积,突触前激活,,net,非线性激活,Detector,Pooling,Layer,的两种定义,复杂定义,简单定义,有些,层没有参数,9,Pooling,10,定义(没有需要学习的参数),replaces,the output of the net at a certain location with,a,summary,statistic,of the nearby,outputs,种类,max,pooling,(weighted)average pooling,Why Pooling?,11,获取不变性,小的平移不变性:有即可,不管在哪里,很强的先验假设,The,function the layer learns must be invariant to small,translations,Why Pooling?,12,获取不变性,小的平移不变性:有即可,不管在哪里,旋转不变性?,9,个不同朝向的,kernels,(模板),0.2,0.6,1,0.1,0.5,0.3,0.02,0.05,0.1,Why Pooling?,13,获取不变性,小的平移不变性:有即可,不管在哪里,旋转不变性?,9,个不同朝向的,kernels,(模板),0.5,0.3,0.02,1,0.4,0.3,0.6,0.3,0.1,Pooling,与下采样结合,更好的获取平移不变性,更高,的计算效率(减少了神经元数),14,从全连接到有限连接,部分链接权重被强制设置为,0,通常:非,邻接神经元,仅保留相邻的神经元,全连接网络的特例,大量连接权重为,0,15,Why Convolution&Pooling,?,a prior probability,distribution over the parameters of a model that encodes,our,beliefs,about,what models are,reasonable,before we have seen any,data,.,模型参数的先验概率,分布,(,No free lunch,),在见到任何数据之前,我们的信念(经验)告诉我们,什么样的模型参数是合理的,Local connections,;对平移的不变性;,tied weigts,来自生物,神经系统的启发,16,源,起:,Neocognitron(1980),Simple,complex,Lower orderhigh order,17,K.,Fukushima,“Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,”,Biological,Cybernetics,vol.36,pp.193202,1980,Local Connection,源起:,Neocognitron(1980),18,源起:,Neocognitron(1980),训练方法,分层,自组织,competitive learning,无,监督,输出层,独立训练,有监督,19,LeCun-CNN1989,用于字符识别,简化,了,Neocognitron,的结构,训练,方法,监督训练,BP,算法,正切函数收敛更,快,,Sigmoid Loss,,,SGD,用于邮编识别,大量应用,20,LeCun-CNN1989,用于字符识别,输入,16x16,图像,L1H1,12,个,5x5,kernel,8x8,个神经元,L2-H2,12,个,5x5x8 kernel,4x4,个神经元,L3H3,30,个神经元,L4,输出层,10,个神经元,总连接数,5*5*12*64+5*5*8*12*16+192*30,,约,66,000,个,21,LeCun-CNN1989,用于字符识别,Tied weights,对同一个,feature map,,,kernel,对不同位置是相同的!,22,LeCun-CNN1989,用于字符识别,23,1998,年,LeNet,数字,/,字符识别,LeNet-5,Feature map,a set of units whose weighs are constrained to be identical.,24,1998,年,LeNet,数字,/,字符识别,例如:,C3,层参数,个数,(3*6+4*9+6*1,)*25+16=1516,25,后续:,CNN,用于目标检测与识别,26,AlexNet for ImageNet(2012),大规模,CNN,网络,650K,神经元,60M,参数,使用,了各种,技巧,Dropout,Data augment,ReLU,Local,Response Normalization,Contrast normalization,.,27,Krizhevsky,Alex,Ilya Sutskever,and Geoffrey E.Hinton.Imagenet classification with deep convolutional neural networks.,Advances in neural information processing systems,.2012.,AlexNet for ImageNet(2012),ReLU,激活函数,28,AlexNet for ImageNet(2012),实现,2,块,GPU,卡,输入层,150,528,其它,层,253,440,186,624,64,896,64,896,43,264,4096,4096,1000,.,29,Krizhevsky,Alex,Ilya Sutskever,and Geoffrey E.Hinton.Imagenet classification with deep convolutional neural networks.,Advances in neural information processing systems,.2012.,AlexNet for ImageNet(2012),ImageNet,物体分类任务上,1000,类,,1,431,167,幅图像,30,Rank,Name,Error rates(TOP5),Description,1,U.Toronto,0.153,Deep learning,2,U.Tokyo,0.261,Hand-crafted,features and learning models.,Bottleneck.,3,U.,Oxford,0.270,4,Xerox/INRIA,0.271,Krizhevsky,Alex,Ilya Sutskever,and Geoffrey E.Hinton.Imagenet classification with deep convolutional neural networks.,Advances in neural information processing systems,.2012.,AlexNet for ImageNet,深度的重要性,31,网络深度,8,7,6,6,4,参数数量,60M,44M,10M,59M,10M,性能损失,0%,1.1%,5.7%,3.0%,33.5%,Krizhevsky,Alex,Ilya Sutskever,and Geoffrey E.Hinton.Imagenet classification with deep convolutional neural networks.,Advances in neural information