,小专题:平行线的判定与性质,苏科版七年级下册 数学,小专题:平行线的判定与性质苏科版七年级下册 数学,几何学的光荣,在于它从很少几条独立,自主的原则出发,而得以完成如此多的,工作。,-,牛顿,几何学的光荣,在于它从很少几条独立,1,、掌握平行线的性质,能运用平行线的判定与性质进行角的计算与证明;,2,、在问题探究中,仔细观察、比较、联想、分析、归纳、大胆猜想和概括;,3,、通过本课初步学会识别及构,建基,本图形、体会图形间的变化及联系,增强自己的识图和逻辑推理能力。,学习目标,1、掌握平行线的性质,能运用平行线的判定与性质进行角的计算与,两直线平行,1.,同位角相等,2.,内错角相等,3.,同旁内角互补,性质,判定,1,、由,_,得到,_,的结论是平行线的判定,;,2,、由,_,得到,_,的结论是平行线的性质,.,用途,:,用,途,:,角的关系,两直线平行,两直线位置关系的确定,两直线平行,角相等或互补,角的计算与证明,请注意,:,知识回顾,两直线平行1.同位角相等2.内错角相等3.同旁内角互补性质,如图,,AB,,,CD,是两根钉在木板上的平行木条,将一根橡皮筋,固定在,A,,,C,两点,点,E,是橡皮筋上的一点,拽动,E,点将橡皮筋,拉紧后,请你探索,A,,,AEC,,,C,之间具有怎样的关系并,说明理由(提示:先画出示意图,再说明理由),课堂引入,一个动点与两条平行线的位置关系,分析,:,点在两平行线之间,点在两平行线之外,如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋课堂,一个动点与两条平行线的位置关系,点在两平行线之间,A,E,C,D,B,图,1,A,E,C,D,B,图,2,分类讨论,注:,直线,AC,为分界线,一个动点与两条平行线的位置关系点在两平行线之间AECDB图,A,E,C,D,B,图,3,A,E,C,D,B,图,4,分类讨论,点在两平行线之外,A,E,C,D,B,图,6,A,E,C,D,B,图,5,注:,直线,AC,为分界线,AECDB图3AECDB图4分类讨论点在两平行线之外AEC,基本图形一,A,E,C,D,B,图,1,F,解,:,AEC,A,+,C,过,E,作,EF,AB,,,AB,CD,,,EF,CD,,,C,FEC,;,AB,EF,,,A,AEF,;,AEC,AEF,+,FEC,A,+,C,分析,:,过“拐点”,E,作平行线,形成截线,,利,用平行线的性质得角的关系,方法一,平行公理,基本图形一AECDB图1F解:AECA+C分析:过,A,E,C,D,B,图,1,解,:,AEC,EAB,+,ECD,连接,AC,,,AB,CD,,,BAC,+,ACD,180,即,BAE,+,EAC,+,ACE,+,ECD,180,AEC,+,EAC,+,ACE,180,AEC,BAE,+,ECD,分析,:,连接,AC,,形成三角形,AEC,,利用三角形的内角和及平行线的性质,方法,二,基本图形一,AECDB图1解:AECEAB+ECD分析:连接A,A,E,C,D,B,图,1,F,解,:,AEC,A,+,C,延长,AE,交,CD,于,F,,,AB,CD,,,A,AFC,;,AEC,AFC,+,C,A,+,C,分析,:,延长,AE,,形成三角形,ECF,,,利,用三角形外角的性质,方法,三,提问,:,若已知,AEC,A,+,C,,则,AB,CD,吗?,基本图形一,AECDB图1F解:AECA+C分析:延长AE,形,变,式:,如图,若,AB,CD,则:,A,B,C,D,E,当左边有两个角,右边有一个角时,:,A,+,C,=,E,当左边有两个角,右边有两个角时,:,A,+,F,=,E,+,D,C,A,B,D,E,F,E,1,C,A,B,D,E,2,F,1,当左边有三个角,右边有两个角时,:,A+,F,1,+,C,=,E,1,+,E,2,同类拓展,变式:如图,若ABCD,则:ABCDE当左边有两个角,右,C,A,B,D,E,1,F,1,E,2,E,m,F,2,F,n,A,+,F,1,+,F,2,+,+,F,n,=,E,1,+,E,2,+,+,E,m,+,D,当左边有,n,个角,右边有,m,个角时:,若左边有,n,个角,右边有,m,个,角,,你,能找到规律吗?,同类拓展,CABDE1F1E2EmF2FnA+F1+F2,分析,:,过“拐点”,E,作平行线,形成截线,,利,用平行线的性质得角的关系,方法一,A,E,C,D,B,图,2,F,解:,AEC,+,EAB,+,ECD,360,,,过,E,作,EF,AB,,则,AB,FE,CD,,,BAE,+,AEF,180,CEF,+,ECD,180,,,BAE,+,AEF,+,CEF,+,ECD,360,,,即,AEC,+,EAB,+,ECD,360,基本图形,二,分析:过“拐点”E作平行线,形成截线,方法一AECDB图2F,A,E,C,D,B,图,2,解,:,AEC,+,EAB,+,ECD,360,连接,AC,,,AB,CD,,,BAC,+,ACD,180,AEC,+,EAC,+,ACE,180,BAC,+,ACD,+,EAC,+,ACE,+,AEC,360,即,AEC,+,EAB,+,ECD,360,分析,:,连接,AC,,形成三角形,ACE,,利用三角形的内角和及平行线的性质,方法,二,基本图形,二,AECDB图2解:AEC+EAB+ECD360,A,E,C,D,B,图,1,F,解,:,AEC,+,EAB,+,ECD,360,延长,AE,交,CD,反向延长线于,F,,,AB,CD,,,A,AFG,;,AEC,+,EAB,+,ECD,AFG,+,AEC,+,ECD,360,分析,:,延长,AE,,形成三角形,ECF,,,利,用三角形的外角,和,的性质,方法,三,提问,:,若已知,AEC,+,EAB,+,ECD,360,,则,AB,CD,吗?,G,基本图形,二,AECDB图1F解:AEC+EAB+ECD360,变,式:,如图,AB,CD,则,:,C,A,B,D,E,A,C,D,B,E,2,E,1,当有一个拐点时:,A,+,E,+,C=,360,当有两个拐点时:,A,+,E,1,+,E,2,+,C,=,540,当,有三个拐点时:,A,+,E,1,+,E,2,+,E,3,+,C,=,720,A,B,C,D,E,1,E,2,E,3,同类拓展,变式:如图,ABCD,则:CABDEACDBE2E1当,A,B,C,D,E,1,E,2,E,n,当有,n,个拐点时:,A,+,E,1,+,E,2,+,E,n,+,C,=,180,(,n,+1,),若有,n,个拐点,你能找到规律吗?,同类拓展,ABCDE1E2En当有n个拐点时:A+E1+,A,E,C,D,B,图,3,分析,:,过“拐点”,E,作平行线,形成截线,,利,用平行线的性质得角的关系,方法一,F,解:,C,A,+,AEC,过,E,作,EF,AB,,则,AB,FE,CD,,,C,CEF,,,A,AEF,,,CEF,AEF,+,AEC,,,C,A,+,AEC,基本图形三,AECDB图3分析:过“拐点”E作平行线,形成截线,方法一F,A,E,C,D,B,图,3,分析,:,方法二,F,解:,ECD,A,+,E,AB,CD,,,ECD,CFB,,,CFB,A,+,E,,,ECD,A,+,E,延长,EC,,形成三角形,AEF,,,利,用三角形的外角的性质,提问,:,若已知,ECD,A,+,E,,则,AB,CD,吗?,基本图形三,AECDB图3分析:方法二F解:ECDA+E延长E,分析,:,过“拐点”,E,作平行线,形成截线,,利,用平行线的性质得角的关系,方法一,F,A,E,C,D,B,图,4,解:,A,C,+,AEC,过,E,作,EF,AB,,则,AB,FE,CD,,,C,CEF,,,A,AEF,,,AEF,CEF,+,AEC,,,A,C,+,AEC,基本图形四,分析:过“拐点”E作平行线,形成截线,方法一FAECDB图4,分析,:,方法二,F,解:,A,C,+,E,AB,CD,,,EFD,A,,,EFD,C,+,E,,,A,C,+,E,找三角形,CEF,,,利,用三角形的外角的性质,提问,:,若已知,A,C,+,E,,则,AB,CD,吗?,A,E,C,D,B,图,4,基本图形四,分析:方法二F解:AC+E 找三角形CEF,提问,A,E,C,D,B,图,6,A,E,C,D,B,图,5,A,C,+,E,C,A,+,E,基本图形五、六,AECDB图6AECDB图5AC+ECA+E,运用知识,例,1,:,如图,已知,AB,DE,,,ABC,80,,,CDE,150,,求,BCD,。,解:,反向延长,DE,交,BC,于,M,,,AB,DE,,,BMD,ABC,80,,,CMD,180,BMD,100,;,又,CDE,CMD,+,BCD,,,BCD,CDE,CMD,150,100,50,【分析】,根据两直线平行,内错,角,相,等以及三角形外,角,性质,即,可解答,M,运用知识例1:如图,已知ABDE,ABC80,CD,运用知识,例,2,:,如图,,CD,BE,,则,2+,3,1,的度数等于,解:,如图,过,A,作,AF,CD,,,CD,BE,,,AF,BE,,,3,BAF,,,CAF,BAF,1,3,1,,,AF,CD,,,CAF,+,2,180,,,3,1+,2,180,【分析】,如图,过,A,作,AF,CD,,依据平行线的性质,即可得到,3,BAF,,,CAF,+,2,180,,进而得出,2+,3,1,的度数,180,F,运用知识例2:如图,CDBE,则2+31的度数等于,例,3,:,如,图,直线,AB,CD,,,EFA,=30,,,FGH,=90,,,HMN,=30,,,CNP,=50,,则,GHM,的大小,是,。,B,A,G,M,E,F,C,P,H,N,D,运用知识,A,+,F,1,+,F,2,+,+,F,n,=,E,1,+,E,2,+,+,E,m,+,D,当左边有,n,个角,右边有,m,个角时:,【分析】,BFG,+,GHM,+,MND,FGH,+,HMN,30+,GHM,+50,90+30,GHM,4,0,40,例3:如图,直线ABCD,EFA=30,FGH=90,思维拓展,B,A,D,C,E,F,【分析】,(1,),由基本图形,一得,:,AEC,=,EAB,+,ECD,(2,),由基本图形,一得,:,AFC,=,FAB,+,FCD,思维拓展BADCEF【分析】(1)由基本图形一得:AEC,思维拓展,B,A,D,C,E,F,【分析】,(1,),由基本图形,一得,:,AEC,=,EAB,+,ECD,(2,),由基本图形,一得,:,AFC,=,FAB,+,FCD,思维拓展BADCEF【分析】(1)由基本图形一得:AEC,思维拓展,【分析】,例,5,:,已知,AB,CD,,,ABE,和,CDE,的平分线相交于,F,,,E,=1,40,则,F,=,。,(1,),由基本图形,一,,你能得到,F,与1+3的关系吗?,(2,),由基本图形,二,,你能得到,ABE,+,CDE,的值吗?,(3,),由,BF,和,DF,分别平分,ABE,和,CDE,,你能得到,1+3 与,ABE,+,CDE,的关系吗?,解:由基本图形二得:,ABE,+,CDE+,E=,360,E,=,1,40,ABE,+,CDE=,22,0,BF,DF,分别平分,ABE,和,CDE,1+,3,=,11,0,F,=,1,+,3,=,11,0,110,思维拓展【分析】例5:已知ABCD,ABE和CDE的平,思维拓展,变式:,将上题中的,ABE,的平分线改为它的,补角,ABG,的平,分线,其它条件不变,则,F,=,。,140,20,方法一,【分析】,由基本图形,四得:,F,=,3-,1,思维拓展变式:将上题中的ABE的平分线改为它的补角ABG,思维拓展,变式:,将上题中的,ABE,的平分线改为它的,补角,ABG,的平,分线,其它条件不变,则,F,=,。,140,20,方法二,F,【