单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,数学史与数学教育,数学史与数学教育,捷克摩拉维亚狼骨(约三万年前),捷克摩拉维亚狼骨(约三万年前),甲骨文数字,(1600 B.C.),甲骨文数字(1600 B.C.),形的抽象,形的抽象,数学史与数学教育教学提纲课件,几何学的不同文化起源,古代埃及,土地丈量,古代中国,天文观测,古代印度,宗教礼仪,几何学的不同文化起源古代埃及土地丈量,河谷文明与数学的起源,尼罗河,两河流域,幼发拉底河与底格里斯河,恒河与印度河,长江与黄河,河谷文明与数学的起源尼罗河,古埃及的数学,非洲的尼罗河是世界上最长的河流之一早在公元前,3000,年左右,在这条河的中下游,古埃及人建立起了早期的奴隶制国家,其地理位置与现在的埃及区别不大打猎、渔业及畜牧业是古埃及人最初的谋生方式一年一度的尼罗河的洪水给这片谷地带来了肥沃的淤泥,那些以游牧为生的古埃及人便在这里定居下来,由狩猎转向耕种在发展农业的同时,手工业与贸易也随之迅速发展起来,这些都推动了自然科学各学科知识的积累,古埃及的数学非洲的尼罗河是世界上最长的河流之一早在公元前3,法老时代的尼罗河流域图,法老时代的尼罗河流域图,作为世界七大奇迹之一的胡夫金字塔,,,是埃及最大的金字塔,大约建于公元前,2500,年左右该金字塔呈正四棱锥形,底面正方形面向东西南北四个正方向,边长,230.5m,,塔高,146.6m(,现高约,137m),近年来,科学家们通过使用精密的仪器对这一金字塔进行了测量,惊奇地发现,其底基正方形边长的相对误差不超过,1,:,14 000,,即不超过,2cm,;四底角的相对误差不超过,1,:,27 000,,即不超过,12,,四个方向的误差也仅在,2,5,之间,这些都说明当时的测量水平已相当高,.,作为世界七大奇迹之一的胡夫金字塔,是埃及最大的金字塔,大约,胡夫金字塔,(,公元前,2500,年左右,),胡夫金字塔(公元前2500年左右),流传至今的古埃及文献,大部分是以僧侣文书写在纸草上保存下来的,人们通常称其为,纸草书,.,保存至今有关数学的纸草书主要有两种,,,都是公元前,2000,年前后的作品,。,一种是陈列于英国伦敦大不列颠博物馆东方展室中的,兰德纸草书,,这是由英国人兰德,1858,年搜集到的;兰德纸草书长,544cm,宽,33cm,共载有,85,个问题,。,另一种收藏于俄国莫斯科美术博物馆,被称为,莫斯科纸草书,,这是由俄罗斯人郭列尼舍夫于,1893,年搜集到的,.,莫斯科纸草书长,544cm,宽,8cm,,共载有,25,个问题,.,流传至今的古埃及文献,大部分是以僧侣文书写在纸草上保存下来的,莱茵德纸草书,(1650 B.C.),大英博物馆,莱茵德纸草书,莫斯科纸草书,(1890 B.C.),莫斯科普希金博物馆,莫斯科纸草书(1890 B.C.)莫斯科普希金博物馆,罗赛塔石碑,(1799,发现,),1799,年,拿破仑远征军的士兵在距离亚历山大城不远的记述的古港口罗赛塔地方发现一块石碑,碑上刻有三种文字,希腊文、埃及僧侣文和象形文记述的同一铭文。,19,世纪初,法国文字学家商博良和英国物理学家托马斯,杨,利用这块碑文,破译了古埃及文字。,罗赛塔石碑(1799 发现)1799年,拿破仑远征军的士兵,古埃及人使用的是十进记数制,并且有数字的专门符号,.,在当一个数中出现某个数码的若干倍时,就将它的符号重复写若干次,即遵守加法的法则。,古埃及的记数制与算术,古埃及的记数制与算术,古埃及人已有了分数的概念,但他们仅使用单位分数也就是分子为,1,的分数,。在整数上方简单地画一个长椭圆,就表示该整数的倒数。,只有,2/3,是一个例外,.,1/7:,2/3:,古埃及的记数制与算术,1/7:2/3:古埃及的记数制与算术,古埃及人的乘法运算与除法运算是通过叠加来进行的,例如计算,:,2633,他们先将,33,的倍数列表,然后从左边一列中选取出和为,26,的数,2,,,8,和,16,,再将右边一列中它们各自对应的数相加,即将,66,,,264,,,528,相加得到,858,即为所求,又如,计算:,19,8,他们将,8,的倍数与部分列表,再从右边一列中选取出其和为,19,的,16,,,2,,,1,这三个数,并将其对应的左边一列中的三个数,2,,,1/4,1/8,相加即为所求,。,古埃及人的乘法运算与除法运算是通过叠加来进行的,古埃及纸草书中出现的,“,计算若干,”,的问题,实际上相当于方程问题,,其解法,是试位法,例如对于方程,,先给,选定一个数值,譬如说,7,,于,是,,而不是,24,,因为,8,必须乘以,3,才是,24,,故,的正确的值一定是,7,乘以,3,即,21,古埃及人还用它来解二次甚至更高次的方程例如在卡洪,(Kahun),发现的一份大约是公元前,1950,年的纸草书中记载了下列问题:将给定的,100,单位的面积分为两个正方形,使二者的边长之比为,4:3,设此二正方形的边长分别为,,且,,由题设,首先取,则,,,此时,而不是,100,,因此,的取值需修正事实上,只,需,将原数值加倍,即可得方程的解,古埃及的代数,古埃及纸草书中出现的“计算若干”的问题,实际上相当于方程问题,在古埃及纸草书中还有有关数列问题的记载如兰德纸草书中有这样一个问题:今将,10,斗麦子分给,10,个人,每人依次递降,l,8,斗,问各得多少,?,这是已知一个等差数列的前若干项和、项数以及公差求其各项的问题,数学史与数学教育教学提纲课件,兰德纸草书中给出一个阶梯图形,(,如图,),,对此,数学史家康托尔是这样解释的:在一个人的财产中,有七间房子,每间房子里七只猫,每只猫能捉七只老鼠,每只老鼠能吃七穗大麦,而每穗大麦又能长出七俄斗大麦,问这份财产中房子、猫、老鼠、麦穗和麦子总共有多少,?,按照这样的解释,显然是一个公比为,7,的等比数列求和问题,阶梯图形给出的是这个数列中的各项,数学史与数学教育教学提纲课件,古埃及人在建筑规模宏大的教堂、金字塔和修建复杂的灌溉系统时,都需要测量;尼罗河水泛滥后冲刷去了许多边界标记,洪水退后也需要重新勘测土地的界线,;,所有这一切,为他们认识基本几何形状和形成几何概念提供了实际背景因此,古埃及人的几何学知识较为丰富,.,在上述两种纸草书的,110,个问题中,有,26,个是几何问题,其中大部分是计算土地的面积与谷物的体积,还有许多与金字塔有关例如,古埃及人知道,任何三角形的面积均为底与高的乘积的一半;圆的面积等于直径的,8/9,的平方,由此可知,他们把圆周率近似地取为,3.16,;直圆柱的体积为底面积与高的乘积,古埃及的几何学,古埃及人在建筑规模宏大的教堂、金字塔和修建复杂的灌溉系统时,,在兰德纸草书中有这样一个问题:,“,已知金字塔的陡度为每肘五手又一指,(,一肘为七手,一手为五指,),,底面边长为,140,肘,求其高,”,在莫斯科纸草书中还有这样一个问题:,“,如果告诉你一个截顶金字塔的垂直高度为,6,,底边为,4,,顶边为,2,,求其体积,”,古埃及人的算法是:,4,的平方为,16,,,4,的二倍为,8,,,2,的平方是,4,,把,16,,,8,和,4,相加得,28,,取,6,的三分之一为,2,,取,28,的二倍为,56,,则它的体积就是这个数由此我们可以看出,古埃及人是通过具体问题说明了高为,h,、底边长为,a,和,b,的正四棱台的体积公式是,在兰德纸草书中有这样一个问题:,古巴比伦,又称美索波达米亚,位于亚洲西部的幼发拉底与底格里斯两河流域,大体上相当于今天的伊拉克,。,大约是在公元前,3000,年左右,古巴比伦人在这里建立起了自己的奴隶制王国,。,在过去相当长的一段时间内,人们对于古巴比伦数学的认识是通过古希腊文化中的零星资料得到的,。,19,世纪后期,考古学家开始发掘美索波达米亚遗址,。,在发掘的过程中,人们发现了数以万计的不同时期的泥板,它们是用胶泥制成的,。,一块完整的泥板与手掌的大小差不多,上面写有符号,。,这种符号是用断面呈三角形的尖棍刻写的,呈楔形,故人们称之为,楔形文字,。,古巴比伦的数学,古巴比伦,又称美索波达米亚,位于亚洲西部的幼发拉底与底格里斯,普林顿,322,号泥板书,(1600 B.C.),普林顿322号泥板书(1600 B.C.),古巴比伦人很早就有了数的写法,他们用楔形文字中较小(竖写),的,代表,1,,较大的(竖写),代 表,60.,由此可知,古巴比伦人的记数系统是,60,进制,.,他们还用较小的(横写),代表,10,,较大的(横写),代表,100.,古巴比伦人也使用分数,他们总是用,60,作分母,例如,作为分数来记时可以表示,20/60,,而,作为分数来记时可以表示,21/60=20/60+1/60.,因此,古巴比伦人的分数系统是不成熟的,.,古巴比伦的记数制与算术,古巴比伦的记数制与算术,与古埃及人相仿,古巴比伦人的算术运算也是借助于各种各样的表来进行的,.,在已发现的泥板书中,大约有,200,块是乘法表、倒数表、平方表、立方表,甚至还有指数表,.,倒数表用于把除法转化为乘法进行,指数表和插值法一起用来解决复利问题的,.,例如,设有本金为,1,,利率为,20%,,问需要多久即可使利息与本金相等,.,这需要求解指数方程,由指数表,古巴比伦人首先确定出,的取值范围是:,然后使用一次插入法求出,4,与,的差,相当于:,故得,(,年,),与古埃及人相仿,古巴比伦人的算术运算也是借助于各种各样的表来,在公元前,2000,年前后,古巴比伦数学己出现了用文字叙述的代数问题如英国大不列颠博物馆,13901,号泥板记载了这样一个问题:,“,我把我的正方形的面积加上正方形边长的三分之二得,求该正方形的边长,”,这个问题相当于求解方程,该泥板上给出的解法是:,1,的三分之二是,,,其,一半是 ,将,它自乘得 ,并,把它加到 上得 ,其平方根是 ,再从中减去 的一半得 ,,于是,就是所求正方,形的边长。,古巴比伦的代数,古巴比伦的代数,这一解法相当于将方程,的系数代入公式,求解,只不过在计算时用的是,60,进制又如,已知两个正方形的面积之和为,1000,,其中一个正方形的边长为另一个正方形的边长的,减去,10,,求这两个正方形的边长设较大的正方形的边长为,,则另一正方形的边长为,,故只需解二次方程,这一解法相当于将方程,古巴比伦人将这一解法所需的步骤简单地叙述为,“,平方,10,,得,100,;,1000,减去,100,,就得,900,,开平方得,30”,,求得该正方形的边长为,30,,另一个正方形边长为,10,这就是说,古巴比伦人那时可能已经知道某些类型的一元二次方程的求根公式由于他们没有负数的概念,二次方程的负根不予考虑至于他们是如何得到上述这些解法的,泥板书上没有具体说明他们还讨论了某些三次方程和双二次方程的解法在一块泥板上,他们给出这样的数表,它不仅包含了从,1,到,30,的整数的平方和立方,还包含这个范围内的整数组合,,专家经研究认为,这个数表是用来解决形如,的三次方程的,数学史与数学教育教学提纲课件,此外,在洛佛尔博物馆的一块泥板上,人们还发现了两个级数问题用现代形式可表述为,最令人感兴趣的是哥伦比亚大学普林顿收集馆中收藏的第,322,号泥板,该泥板已缺损了一部分,在残留的部分上刻有三列数,专家研究认为:这是一张勾股数,(,即,的整数解,),表,并且极有可能用到了下列参数式:,这正是在一千多年以后古希腊数学中一个极为重要的成就,数学史与数学教育教学提纲课件,在古巴比伦人的心目中,几何是不重要的,因为实际中的