Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,Jiangxi University of Science and Technology,Jiangxi University of Science and Technology第二级,第三级,第四级,第五级,*,School of Resources and Environmental Engineering,*,2024/11/17,1,2024/11/17,1,5,井巷通风阻力,Mine Ventilation Resistance,5.1,概述,5.2,摩擦阻力,5.3,局部阻力和正面阻力,5.4,井巷通风阻力小结,5.5,降低井巷通风阻力的方法,5.6,等积孔与井巷风阻特性曲线,2023/10/712023/10/715 井巷通风阻力,2024/11/17,2,2024/11/17,2,5.1,概 述,General Introduction,在通风工程中,空气沿井巷流动时,井巷对风流所呈现的阻力,统称,井巷的通风阻力,,而单位体积风流的能量损失简称为,风压降,或者,风压损失,。,井巷通风阻力是引起风压损失的原因,而风压损失则是通风阻力的量度。二者在数量上是相等的。,按风流边界状态的不同,通常将,通风阻力,分成三类:,第一类:,摩擦阻力,:,第二类:,局部阻力,;,第三类:,正面阻力,。,2023/10/722023/10/725.1 概 述,2024/11/17,3,2024/11/17,3,通 风 阻 力,Ventilation Resistance,第一类:,摩擦阻力,:,风流沿井巷流动时在全流程上的摩擦阻力(水力上称沿程阻力),克服摩擦阻力而造成的风流能量的损失,称为摩擦损失。,第二类:,局部阻力,:,由风流边界的急剧改变(突然扩大或者突然缩小等),所引起的阻力,克服局部阻力而造成的风流能量损失称为是局部损失。,第三类:,正面阻力,:,由于风流绕过固定边界的四周(如风流绕过电机车等)所引起的阻力,克服正面阻力而造成的风流能量损失是正面损失。,2023/10/732023/10/73通 风 阻 力 V,2024/11/17,4,2024/11/17,4,5.2,摩擦阻力,Friction Resistance,5.2.1,概述,5.2.2,层流的摩擦阻力,5.2.3,紊流的摩擦阻力,5.2.4,摩擦阻力系数的分析,5.2.5,摩擦阻力系数的确定,2023/10/742023/10/745.2 摩擦阻力,2024/11/17,5,2024/11/17,5,5.2.1,概述,General Introduction,在矿井通风中,摩擦阻力无论在层流或在紊流都可以用下式来计算。(达西公式,水力学)(式,5.1,),(,Pa,),式中,h,f,摩擦阻力(,Pa,),;,达西系数,是由管道的粗糙度与流体的运动状态所决定的常数,无因次;,d,管道直径或者巷道的等效直径(与断面相等的圆的直径,m,);,L,巷道长度(,m,);,V,巷道断面的平均风速(,m/s,)。,2023/10/752023/10/755.2.1 概述,2024/11/17,6,2024/11/17,6,5.2.2,层流的摩擦阻力,Friction Resistance of Laminar Flow,对于层流运动,流体的粘滞力起主导作用。实验和理论都得出 的结果。因此,层流状态的摩擦阻,力计算式为(式,5.2,):,(,Pa,),式中,为空气的粘性动力系数。上式表明,,层流状态下,摩擦阻力与平均风速的一次方成正比,。,2023/10/762023/10/765.2.2 层流的,2024/11/17,7,2024/11/17,7,5.2.3,紊流的摩擦阻力(,1,),Friction Resistance of Turbulent Flow,在 中,,d,是非圆形巷道的等效直径,,根据水力半径的概念,即,或:,式中:,s,巷道断面;,p,巷道的周长。将上式代入阻力公式可以得式(,5.3,):,(,Pa,),2023/10/772023/10/775.2.3 紊流的摩,2024/11/17,8,2024/11/17,8,5.2.3,紊流的摩擦阻力(,2,),Friction Resistance of Turbulent Flow,在式(,5.3,)中,对具体条件,是个常数,令,称为,摩擦阻力系数,,则有:,式(,5.4,):,或 (,Pa,),从上式可以看出,,P,L,S,Q,在,具体条件都是已知的,所以只要确定了摩擦阻力系数,,井巷,摩擦阻力,h,f,就可以求出。,2023/10/782023/10/785.2.3 紊流的摩,2024/11/17,9,2024/11/17,9,5.2.4,摩擦阻力系数的分析,(1),Analysis of Friction Resistance Coefficient,由 可知,,,,是影响,系数的因素。,1,空气密度的影响,与,成正比,所以若,随温度、湿度和气压变化,则,也将发生与,成正比的变化。,2,达西系数的影响,与,成正比,而,又是井巷的粗糙度和雷诺数所决定,所以井巷的粗糙度和雷诺数也就是摩擦阻力系数的影响因素。在水力学中,管道的粗糙度、雷诺数与,系数之间的关系,已由前人的实验(,尼古拉兹试验,)作了回答。,2023/10/792023/10/795.2.4 摩擦阻,2024/11/17,10,2024/11/17,10,5.2.4,摩擦阻力系数的分析,(1),Analysis of Friction Resistance Coefficient,在讨论这些关系之前,先介绍管道,粗糙度,的表示方法。水力学中管道的粗糙度是用,相对粗糙度,或者,相对光滑度,来表示的。,相对粗糙度,n,是管道内壁上凸起的平均高度(绝对粗糙度),K,(,m,)与管道直径,d,(,m,)的比值,即,相对光滑度是指相对粗糙度的倒数,即,2023/10/7102023/10/7105.2.4 摩,2024/11/17,11,2024/11/17,11,5.2.4,摩擦阻力系数的分析,(1),Analysis of Friction Resistance Coefficient,在矿井通风中,用,混凝土砌碹支护,的一类巷道,其相对粗糙度与相对光滑度的概念和上述相同,但用,支柱支护,的一类巷道,其粗糙度则采用所谓,纵口径,和,横口径,来表示。,纵口径,是相邻两支架中心线的距离,l,(,m,)与支柱直径或厚度,d,(,m,)之比,即,横口径,的关系式为:,对于圆形巷道,对于非