资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
第11页 / 共39页
第12页 / 共39页
第13页 / 共39页
第14页 / 共39页
第15页 / 共39页
第16页 / 共39页
第17页 / 共39页
第18页 / 共39页
第19页 / 共39页
第20页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第,一,章,常用计量经济模型,第一节 时间序列的外推、平滑和季节调整,一、时间序列的成分,趋势成分(,Trend,)、,循环成分(,Cyclical,)、,季节成分(,Season,)、,不规则成分(,Irregular,),二、简单外推模型,由时间序列过去行为进行预测的简单模型,(适用于,y,t,有一个长期增长的模式),1、线性趋势模型,y,t,=c,1,+,c,2,t,2、指数增长趋势模型,两边取对数,3,、自回归趋势模型,4、二次曲线趋势模型,对数自回归趋势模型,美国商业部:,1986,年,1,月至,1995,年,12,月百货公司的月零售额(亿元),例,1,百货公司销售预测,三、平滑技术,(目的是“消除”时间序列中的不规则成分引起的随机波动,适用于稳定的时间序列),1、移动平均模型,移动平均数=最近,n,期数据之和/,n,例如3期移动平均,中心移动平均,3期中心移动平均,2、指数加权移动平均模型,即,(,EWMA,Exponentially Weighted Moving Averages,),越小,时间序列的平滑程度越高。,例2 美国月度新建住房数(1986年1月至1995年10月),四、季节调整,(目的是“消除”时间序列中的季节成分引起的随机波动),Census,(,美国普查局开发的标准方法),移动平均比值法,(,Ratio to Moving Averages),Ratio to Moving AveragesMultiplicative,第一步 用中心移动平均平滑序列,y,t,对于月度资料,对于季度资料,此时可大致认为 已无季节和不规则波动,可看作,的估计,第二步 估计,SI,令,z,t,即为,SI,的估计,第三步 消除不规则变动,得到,S,的估计,对,SI,中同一季节的数据进行平均,从而消除掉,I。,例如,对于月度数据,假定,y,1,是1,月份的数据,,y,2,是1月份的数据,,y,3,是1月份的数据,,y,4,是1月份的数据,总共4年数据。,则,第四步 调整,S,的估计,使其连乘积等于1或和等于12。,第二节 随机时间序列模型,基本假定:时间序列是由某个,随机过程,生成的。,在一定条件下,我们可以从样本观察值中估计随机过程的概率结构,这样我们就能够建立序列的模型并用过去的信息确定序列未来数值的概率。,常用模型:,AR,模型、,MA,模型、,ARMA,模型、,ARIMA,模型、,VAR,模型,、,ECM,等。,统计特征不随时间变化而变化的过程是,平稳过程,(,Stable Process,),如果过程是,严平稳的,(,Strictly Stationary,),,那么对任意的,t,和,k,,,时刻,t,的联合概率密度函数等于时刻,t,+,k,的联合概率密度函数。也就是说,对于具有严平稳性质的随机过程,其全部概率结构只依赖于时间之差。,严平稳性的条件很严格,我们希望稍微放松限制条件。于是从实际角度考虑,我们可以用联合分布的矩的平稳性来定义随机过程的平稳性。,一、平稳过程,m,阶弱平稳过程,(,Weakly Stationary,),是指随机过程的联合概率分布的矩直到,m,阶都是相等的。,若一个过程,r,(,t,),是,2,阶弱平稳过程,,那么它会满足下列条件:,(,1,)随机过程的均值保持不变;,(,2,)随机过程的方差不随时间变化;,(,3,),r,(,i,),和,r,(,j,),之间的相关性只取决于时间之差,j-i,。,注,:,弱平稳过程不一定是严平稳过程;,而严平稳过程若存在二阶矩,则必是,2,阶弱平稳过程。,例,白噪声过程,其中随机变量 满足,显然白噪声过程是一个,2,阶弱平稳过程。,例,随机游走模型,其中 是服从正态分布的白噪声,显然,因此,P,t,是非平稳过程。,用,X,(,t,),表示一随机过程,,滞后期为,k,的自相关系数,定义为,二、自相关函数,如果,X,(,t,),是一个平稳过程,则有,因此,其中,协方差函数,自相关函数揭示了,X,(,t,),的相邻数据点之间存在多大程度的相关。,如果对所有的,k,0,,,序列的自相关函数等于,0,或近似等于,0,,则说明序列的当前值与过去时期的观测值无关,这时该序列没有可预测性。,相反,如果金融序列间是自相关的,就意味着当前回报依赖历史回报,因此可以通过回报的历史值预测未来回报。,例,白噪声过程的自相关函数,协方差函数,自相关函数,样本自相关函数,样本自相关函数可以用来检验序列的所有,k,0,的自相关函数的真实值是否为,0,的假设。,Box,和,Pierce,的,Q,统计量,如果检验通过,则随机过程是白噪声。,自相关函数还可被用于检验一个序列是否平稳。,平稳时间序列的自相关函数随着滞后期,k,的增加而快速下降为,0,平稳序列,非平稳序列,齐次非平稳过程,y,t,非平稳,但,y,t,y,t,-,1,平稳,称,y,t,为一阶齐次非平稳过程,例,随机游走过程是一阶齐次非平稳过程,例,利率的模型,时间序列的当前值依赖于过去时期的观察值。,三、自回归(,A,uto-,R,egression,),模型,p,阶自回归模型,AR(,p,),:,一,阶自回归模型,AR(1),:,均值,若,则过程平稳。,例,带漂移项的随机游走过程,过程是非平稳的,不妨设常数项为,0,平稳,AR(1),过程,的自相关函数,方差,协方差,自相关函数,这说明自回归过程具有无限记忆力。,过程当前值与过去所有时期的值相关,且时期越早,相关性越弱。,四、移动平均(,M,oving,A,verages,),模型,q,阶移动平均模型,MA(,q,),:,一,阶移动平均模型,MA(1),:,均值,若,则过程平稳。,MA(1),过程,的自相关函数,协方差,自相关函数,这说明,MA(1),过程,仅有一期的记忆力。,MA(,q,),过程,有,q,期的记忆力。,五、混合自回归,-,移动平均(,ARMA,),模型,ARMA(,p,q,),:,ARMA(1,1),:,均值,ARMA(1,1),过程,的自相关函数,协方差,方差,自相关函数,六、,ARIMA,模型,ARIMA(,p,d,q,),:,对原序列,y,t,作,d,阶差分后应用,ARMA(,p,q,),自回归算子:,移动平均算子:,d,的确定,:差分后检查自相关函数,确定序列是否平稳,直到平稳为止。,p,、,q,的确定,:由自相关函数、偏自相关函数确定,或由,AIC,、,SC,准则确定。,ARIMA,模型的确认,若,自回归过程的阶数为,p,,,则对于,j,p,应有,偏自相关函数,j,0,若,移动平均过程的阶数为,q,,,则对于,j,q,应有,自相关函数,j,0,AIC、SC,准则:选择使准则值达到最小的模型阶数。,第,三节,VAR,模型,一、,VAR,(,V,ector,A,uto,R,egression,,,向量自回归),二、格兰杰因果关系(,Granger Causality,),如果变量,x,的过去和现在信息能有助于改进变量,y,的预测,则称,y,是由,x,格兰杰原因引起的,(,y,is Granger-caused by,x,)。,即若变量,x,的过去和现在信息被考虑进总体的所有其它信息中时,,y,能被预测得更有效。,Granger,C.W.J.(1969),Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,.,Econometrica,37,424-438.,Granger Causality Test,假定,(,x,y,),T,由,VAR(,p,),过程生成,即,检验,“,x,不,是,y,的,Granger Cause,”:,检验,“,y,不,是,x,的,Granger Cause,”:,三、脉冲响应函数,(,Impulse Response Functions),脉冲响应函数,确定每个内生变量对他自己及所有其它内生变量的变化是如何反应的。,四、方差分解,(,Variance Decomposition,),把每个变量预测误差的方差按其成因分解为与各个内生变量相关联的组成部分。,第四节 协整理论,Engle,Robert F.and C.W.J.Granger(,1987,),Co-integration and Error Correction:Representation,Estimation,and Testing.,Econometrica,55,251-76.,两个或两个以上非平稳的时间序列进行特殊组合后可能呈现平稳性。,若,x,t,和,y,t,是随机游走,但变量,z,t,=,x,t,y,t,是平稳的,则称,x,t,和,y,t,是协整的,协整向量为(,1,)。,例,考虑模型,其中,u,1,t,和,u,2,t,是不相关的白噪声。,分析:,y,2,t,是随机游走,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6