资源预览内容
第1页 / 共38页
第2页 / 共38页
第3页 / 共38页
第4页 / 共38页
第5页 / 共38页
第6页 / 共38页
第7页 / 共38页
第8页 / 共38页
第9页 / 共38页
第10页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
,6,2,反比例函数的图象与性质,反比例函数的图象,北师版九年级上册,复习导入,1.以下函数中,哪些是反比例函数?,1 23,45,复习导入,你还记得画函数图象的步骤吗?,列表;,描点;,连线。,探究新知,你能尝试画出反比例函数,的图象吗?,1.,列表,x,8,4,3,2,1,1,2,4,8,x,1,2,3,4,8,8,4,2,1,2.,描点,3.,连线,用光滑的曲线顺次连接各点,你认为画反比例函数图象时应注意哪些问题?与同伴交流,.,议一议,x,0,;,用光滑的曲线连接各点;,图象是延伸的,不要画成有明确端点;,曲线的发展趋势是,无限靠近坐标轴,,但不和坐标轴相交,.,做一做,在图中的平面直角坐标系中画出反比例函数 的图象,.,议一议,观察函数 与函数 的图象,它们有,什么相同点和不同点?,反比例函数的图象是由,两支曲线,组成的,,双曲线,当,k,0,时,两支曲线分别位于,一、三象限,内;,当,k,0,时,两支曲线分别位于,二、四象限,内;,归 纳,想一想,反比例函数是中心对称图形吗?如果是,请找出对称中心,.,原点,想一想,反比例函数是轴对称图形吗?如果是,请指出它的对称轴,.,随堂练习,1.,下图给出了反比例函数 和 的图象,你知道哪一个是 的图象吗?为什么?,(,2,),1,k,0,,双曲线位于二、四象限,.,2.,在同一直角坐标系内,画出函数 与函数,y,=,x,1,的图象,并利用图象求它们的交点坐标,.,y,=,x,1,2,1,1,2,课堂小结,当,k,0,时,两支曲线分别位于,一、三象限,内;,当,k,0,时,两支曲线分别位于,二、四象限,内;,课后作业,习题,1,、,2,复习导入,(x+m)2=nn0,一般形式,用公式法解一元二次方程应先将方程化为,_.,用配方法解一元二次方程的关键是将方程转化为,_,的形式。,复习导入,选择适宜的方法解以下方程,1x2-6x=7;23x2+8x-3=0.,解:1配方,得 x2-6x+32=7+32,(,x,-,3),2,=16,两边开平方,得,x,-,3,=4,x,1,=,-,1,,,x,2,=7.,复习导入,选择适宜的方法解以下方程,1x2-6x=7;23x2+8x-3=0.,解:2a=3,b=8,c=-3.,b,2,-,4,ac,=8,2,-,43(,-,3)=100 0,,,复习导入,因式分解的方法,1提公因式法,am,+,bm,+,cm,=,m,(,a,+,b,+,c,),2公式法,a,2,-,b,2,=(,a,+,b,)(,a,-,b,),a,2,+2,ab,+,b,2,=(,a,+,b,),2,探究新知,一个数的平方与这个数的,3,倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?,设这个数为,x,,根据题意,可得方程,x,2,=3,x,.,由方程,x,2,=3,x,,得,x,2,-,3,x,=0.,因此,x,1,=0,,,x,2,=3.,所以这个数是,0,或,3.,他做得对吗?,探究新知,一个数的平方与这个数的,3,倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?,设这个数为,x,,根据题意,可得方程,x,2,=3,x,.,由方程,x,2,=3,x,,两边同时约去,x,,得,.,x,=3.,所以这个数是,3.,她做得对吗?,探究新知,一个数的平方与这个数的,3,倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?,设这个数为,x,,根据题意,可得方程,x,2,=3,x,.,由方程,x,2,=3,x,,得,x,2,-,3,x,=0,,即,x,(,x,-,3)=0.,于是,x,=0,,或,x,-,3=0.,因此,x,1,=,-,0,,,x,2,=3.,所以这个数是,0,或,3.,他做得对吗?,“或是“二者中至少有一个成立的意思,包括两种情况,二者同时成立;二者有一个成立。“且是“二者同时成立的意思。,如果,ab,=0,,那么,a,=0,或,b,=0.,说一说,你是怎么理解这句话的?,x,2,-,3,x,=0,x,(,x,-,3)=0,当一元二次方程的一边是 0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.,归纳总结,这种用分解因式解一元二次方程的方法称为,因式分解法,.,例 解以下方程:,15x2=4x;2x(x-2)=x-2.,解:1原方程可变形为,5,x,2,-,4,x,=0,,,x,(5,x,-,4)=0,,,x,=0,,或,5,x,4=0.,2原方程可变形为,x,(,x,-,2)(,x,-,2)=0,,,(,x,-,2)(,x,-,1)=0,,,x,-,2,=0,,或,x,1=0.,x,1,=2,,,x,2,=1.,用因式分解法解一元二次方程的步骤:,方程右边化为,_.,将方程左边分解成两个,_,的乘积,.,至少,_,因式为零,得到两个一元一次方程,.,两个,_,就是原方程的解,.,0,一次因式,有一个,一元一次方程的解,想一想,你能用因式分解法解方程,x,2,-,4=0,,,(,x,+1),2,-,25=0,吗?,x,2,4=0,解:原方程可变形为,(,x,+2)(,x,-,2)=0,x,+2=0,或,x,-,2=0,x,1,=,-,2,,,x,2,=2.,(,x,+1),2,25=0,解:原方程可变形为,(,x,+1+5)(,x,+1,-,5)=0,(,x,+6)(,x,-,4)=0,x,+6=0,或,x,-,4=0,x,1,=,-,6,,,x,2,=4.,达标检测,【,选自教材,P47,随堂练习,】,用因式分解法解以下方程:,1(x+2)(x-4)=0;24x(2x+1)=3(2x+1).,解:1,x,+2=0,或,x,-,4=0,x,1,=,-,2,,,x,2,=4.,2原方程可变形为,4,x,(2,x,+1),-,3(2,x,+,1)=0,(2,x,+1)(4,x,-,3)=0,2,x,+1=0,或,4,x,-,3=0,一个数平方的,2,倍等于这个数 的,7,倍,求这个数,.,解:设这个数为,x,.,2,x,2,=7,x,.,2,x,2,-7,x,=0.,x,(,2,x,7),=0.,x,=0,或,2,x,7=0.,【,选自教材,P47,随堂练习,】,【,选自教材,P47,习题,2.7】,用因式分解法解以下方程:,1(4x-1)(5x+7)=0;2x(x+2)=3x+6;,3(2x+3)2=4(2x+3);42(x-3)2=x2-9.,解:1,4,x,-,1=0,或,5,x,+7=0,2原方程可变形为,x,(,x,+2)=3(,x,+2),x,(,x,+2),-,3(,x,+2)=0,(,x,+2)(,x,-,3)=0,x,1,=3,,,x,2,=,-,2.,【,选自教材,P47,习题,2.7】,用因式分解法解以下方程:,1(4x-1)(5x+7)=0;2x(x+2)=3x+6;,3(2x+3)2=4(2x+3);42(x-3)2=x2-9.,3原方程可变形为,(2,x,+3),2,-,4(2,x,+3)=0,(2,x,+3)(2,x,+3,-,4)=0,2,x,+3=0,或,2,x,1=0,4原方程可变形为,2(,x,-,3),2,=(,x,+3)(,x,-,3),2(,x,-,3),2,-,(,x,+3)(,x,-,3)=0,(,x,-,3),2(,x,-,3),-,(,x,+3),=0,(,x,-,3)(,x,-,9)=0,x,1,=3,,,x,2,=9.,【,选自教材,P48,习题,2.7】,解以下方程:,15(x2-x)=3(x2+x);2(x-2)2=(2x+3)2;,3(x-2)(x-3)=12;42x+6=(x +3)2;,52y2+4y=y+2.,解:1原方程可变形为,5,x,2,-,5,x,-,3,x,2,-,3,x,=0,2,x,2,-,8,x,=0,2,x,(,x,-,4)=0,x,1,=0,,,x,2,=4.,2原方程可变形为,(,x,-,2),2,-,(2,x,+3),2,=0,(,x,-,2+2,x,+3),(,x,-,2),-,(2,x,+3),=0,(3,x,+1)(,-,x,-,5)=0,【,选自教材,P48,习题,2.7】,解以下方程:,15(x2-x)=3(x2+x);2(x-2)2=(2x+3)2;,3(x-2)(x-3)=12;42x+6=(x +3)2;,52y2+4y=y+2.,3原方程可变形为,x,2,-,5,x,+,6,-,12,=0,x,2,-,5,x,-,6,=0,(,x,6)(,x,+1),=0,x,1,=,-,1,,,x,2,=6.,4原方程可变形为,2(,x,+,3),(,x,+3),2,=0,(,x,+,3),2,-,(,x,+3),=0,(,x,+,3),(,-,x,-,1)=0,x,1,=,-,1,,,x,2,=,-,3.,【,选自教材,P48,习题,2.7】,解以下方程:,15(x2-x)=3(x2+x);2(x-2)2=(2x+3)2;,3(x-2)(x-3)=12;42x+6=(x +3)2;,52y2+4y=y+2.,5原方程可变形为,2,y,2,+,4,y,y,-,2,=0,2,y,2,+,3,y,-,2,=0,(2,y,-,1)(,y+,2),=0,公园原有一块正方形空地,后来从这块空地上划出局部区域栽种鲜花如图),原空地一边减少了 1 m,另一边减少了 2 m,剩余空地面积为 12 m2,求原正方形空地的边长.,【,选自教材,P48,习题,2.7】,解:设原正方形空地的边长为 x m,x22xx1212,,解得 x12舍去,x2 5,所以,原正方形空地的边长为 5 m,通过这节课的学习活动,你有什么收获?,课堂小结,当一元二次方程的一边是 0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.,这种用分解因式解一元二次方程的方法称为,因式分解法,.,用因式分解法解一元二次方程的步骤:,方程右边化为,_.,将方程左边分解成两个,_,的乘积,.,至少,_,因式为零,得到两个一元一次方程,.,两个,_,就是原方程的解,.,0,一次因式,有一个,一元一次方程的解,课堂小结,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6