单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,整理课件,*,1,整理课件,小学数学运算定律和简便计算,2,整理课件,一、加法运算定律:,(,1,)加法交换律:两个加数交换位置,和不变。用字母表示:,a+b=b+a,(,2,)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变。用字母表示,:(a+b)+c=a+(b+c),3,整理课件,二、乘法运算定律:,(,1,)乘法交换律:交换两个因数的位置,积不变。用字母表示:,ab=ba,(,2,)乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,积不变。用字母表示:,(ab)c=a(bc),(,3,)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。用字母表示:,(a+b)c=ac+bc a(b+c)=ab+ac,4,整理课件,三、简便计算,(,1,)连减的简便计算:一个数连续减去两个数,可以用这个数减去两个减数的和。(,注意这种方法的逆向运算,),a-b-c=a-(b+c),(,2,)连除的简便计算:一个数连续除以两个数,可以用这个数除以两个除数的积,abc=a(bc),(,3,)加减法、乘加、乘除法的灵活应用,a-b+c=a+c-b,abc=ac b,5,整理课件,四、运算定律与简便计算的整理和复习,6,整理课件,小小法官(判断对错),(,1,),25 102=25 100+2 (),(,2,),132-,(,32+47,),=132 32+47 (),(,3,),350 5 2=350(5 2)(),(,4,),68 99+68=68 100 (),7,整理课件,典型错误分析,8,整理课件,错误一:对运算定律混淆不清,如:,18101=181001=1800,(,101,变成了,1001,,所以错误。),12548=125,(,40+8,),=12540+8=5008,(应该,8,与,125,再相乘),12548=125,(,40+8,),=125401258=5000000,(,40+8,)中的加号“,+”,看乘了乘号“,”,,,2564125=25,(,60+4,),125=2560+4125=2000,(,60+4,)的括号直接去掉了,把原来的连乘变成了乘法加法。,这些错误的发生,说明了学生对乘法结合律和乘法分配律这两条运算定律产生了混淆。这是由于乘法结合律与乘法分配律在表现形式上十分相近,致使一些学生造成知觉上的错误。,9,整理课件,错误二:对运算性质理解不深,如:,168,56,36,168,(,56,36,),I48,(,应该减去两个数的和,),174-,(,74-38,),=174-74-38=62,(,应该减去,74,,再加上,38,),356-,(,56+98,),=356-56+98=398,(,应该减去,56,,再减去,98,),这种错误主要原因是学生对“一个数减去两个数的和”与“一个数减去两个数的差”运算性质理解不清。,10,整理课件,错误三:对特殊数字判别不明,3855+1845=38,(,55+45,),=3800,如:(前面的因数是,38,,后面的因数是,18,),56284428=28,(,56+44,),=2800,(,这是四个数连乘,变成了乘加,),254254=1,(,把后面的除数,25,变成了因数了,改变了原来数的性质,),这种错误的发生,除了学生不懂乘法分配律的因素外,主要受乘以整百、整千数的简便计算方法的影响。学生做题时没有先分析式题结构,只是看到两个数相加正好凑成,100,,于是便错误使用乘法分配律。,11,整理课件,12,整理课件,掌握简便运算的解题技巧,归纳为三步曲:一,找,二,变,三,估,。,13,整理课件,一,找,,就是找题目的特征。,做题前要求学生先由,总体到部分,,由,运算符号到参加运算的数,的特点进行,全面观察,。结合学过的有关知识,寻找简便运算的方法。让学生明白要把,一个数分成两个数的和、差、积,,以达到简算的目的。,14,整理课件,如:,18101,之类的题目,其题目的特征就是一个数乘以接近整百、整千的数,就可以指导学生将算式转化成一个数乘以整百整千数与多余数的和或差,然后再利用乘法分配律进行计算。有些题目,简便运算的步骤隐藏在运算过程中,因此,每完成一步运算都要,认真观察,,从中发现简算条件,进行简便运算。,15,整理课件,二,变,,就是变换运算方式。,计算时要突破算式原来的运算顺序,根据运算定律、性质重组运算顺序,使简算特征从隐性变为显性,从而让计算过程化繁为简、变难为易。,如:计算“,1253225”,这道题时,看到,125,就应想到它与,8,相乘得,1000,,看到,25,马上就想到它与,4,相乘得,100,,因此,将,32,看成是,8,与,4,的积,这样这道题实际就是,(1258)(425),,学生一看很快就得出结果就是,1000100=100000,。,16,整理课件,又如:“,1345-125-875”,可以利用减法的性质将原题变为“,1345-,(,125+875,)”括号里面的结果刚好是,1000,,因此,1345-1000,就得到,345,。,又如:“,1500254”,利用除法的性质使原题变为,15800,(,254,)得,1500100,最后结果得,15,。使整个计算过程口算化。,17,整理课件,三,估,,就是估测计算结果。,即加强心算(估算)过程教学,培养计算能力,增强计算的正确率。,如计算“,18 101”,,当学生进行简算后,可以指导学生通过心算进行验证。心算过程:,100,个,18,是,1800,,加上,1,个,18,是,18,,结果等于,1818,。所以当学生得出,18101=181001=1800,时就可以马上知道在简算过程中出现了问题。,18,整理课件,典型习题讲解:,一、,69,53,47,想:先观察数的特点和运算的特点。,1,、是加法算式,因此想能不能运用加法的交换律和结合率,,2,、有,53,和,47,,口算得,100,,凑成整百,因此把它们两个结合,运用加法结合率。,3,、因为,53,和,47,在后面连在一起,因此先算后两个数的和,要加括号。,19,整理课件,二、,43+55+57+45=,(,43+,),+,(,55+,),想:先观察数的特点和运算的特点,,1,、是加法算式,因此想能不能运用加法的交换律和结合率。,2,、有,43,和,57,;还有,55,和,45,,口算,43+57=100,;,55+45=100,,都凑成整百,因此把它们两个结合,运用加法结合率。,3,、因为,43,和,57,不连在一起,要交换位置,,55,和,57,互相交换位置,因为要先算前两个数的和,同时也可以算后两个数的和,因此要把前面两个数和后面两个数都加括号。,20,整理课件,三、,98125=9,(,8125,),想:先观察数的特点和运算的特点,,1,、是乘法算式,因此想能不能运用乘法的交换律和结合率,,2,、看到,125,,就先找有没有,8,,题目中有,8,,因此把,125,和,8,凑成整千,得,1000,,因此把它们两个结合,运用乘法结合率,,3,、因为,8,和,125,在后面连在一起,因此先算后两个数的积,要加括号。,21,整理课件,四、,414725=,想:先观察数的特点和运算的特点,,1,、是乘法算式,因此想能不能运用乘法的交换律和结合率,,2,、看到,25,,就先找有没有,4,,题目中有,4,,因此把,25,和,4,凑成整百,得,100,,因此把它们两个结合,运用乘法结合率,,3,、因为,4,和,25,不连在一起,因此先交换两个因数的位置,把,147,和,25,互相交换位置,因为要先算,425,两个数的积,要加括号。,22,整理课件,五、,5628+4428=,想:先观察数的特点和运算的特点,,1,、有乘法算式,又有加法,因此想能不能运用乘法分配率,,2,、看到,56,是因数,就先找有没有另一个因数,44,,题目中有,44,,因此把,56,和,44,凑成整百,得,100,,因此把它们两个结合,运用乘法分配率,,3,、因为,28,是共同的因数,因此写因数的时候只写一个,28,,因为要先算,44+56,这两个数的和,所以要加括号。,23,整理课件,六、,95102,想:先观察数的特点和运算的特点,,1,、,102,接近整百数,这也是乘法算式,考虑能不能运用乘法的交换率、结合率或者分配率,因为,95,和,102,交换位置后,还是算他们的积,不简单,所以乘法交换率不用。,2,、又因为是两个数相乘,使用乘法结合率不简单,所以也不用乘法结合率,如果考虑,95,写成两个数的乘积,能写成,519,,把算式变成,519102,,越变越麻烦了。,3,、考虑使用乘法分配率,需要把其中一个数写成两个数的和,可以把,95,写成(,90+5,),或者把,102,写成(,100+2,),只能写其中一个数,所以把,102,写成(,100+2,)比较简单。,4,、运用乘法分配率,,95102=95,(,100+2,),=95100+952=9500+190=9690,、,24,整理课件,七、,2524,想:先观察数的特点和运算的特点,,1,、,25,是特殊数,这也是乘法算式,考虑能不能运用乘法的交换率、结合率或者分配率,因为,25,和,24,交换位置后,还是算他们的积,不简单,所以乘法交换率不用。,2,、又因为是两个数相乘,没法直接使用乘法结合率。因为有,25,这个特殊数,考虑能不能找到,4,,如果考虑,24,写成两个数的乘积,能写成,46,,把算式变成,2546,,就可以使用乘法结合率了。,2524=25,(,46,),=,(,254,),6=1006=600,3,、考虑使用乘法分配率,需要把其中一个数写成两个数的和,可以把,24,写成(,20+5,),或者把,25,写成(,20+5,),只能写其中一个数,所以把,24,写成(,20+4,)比较简单。,4,、运用乘法分配率,,2524=25,(,20+4,),=2520+254=500+100=600.,5,、比较运用乘法结合率和乘法分配率,这道题用乘法结合率更简单。,25,整理课件,九、,1723234233,想:先观察数的特点和运算的特点,,1,、这是乘法减法算式,考虑能不能运用乘法分配率,,2,、因为有共同的因数,23,,而且,17,;,4,;,3,也很特殊,可以想成是三个乘法算式相减,,1723234233=,(,17-4-3,),23=1023=230,26,整理课件,八、,45101-45,想:先观察数的特点和运算的特点,,1,、这是乘法减法算式,考虑能不能运用乘法分配率,因为有共同的因数,45,,而且,101,也很特殊,接近,100,,可以想成是两个乘法算式相减,,2,、,45,这个特殊数,考虑写出两个数的乘积,写成,451,,把算式变成,45101-451,,就可以使用乘法分配率了。,45101-45=45101-451=45,(,101-1,),=45100=4500,27,整理课件,十、,1253225,,,想:先观察数的特点和运算的特点,,1,、是乘法算式,因此想能不能运用乘法的交换律和结合率,,2,、看到,25,,就先找有没有,4,;看到,125,,就先找有没有,8,。,3,、题目中没有,4,和,8,,但是有,32,,想,32,能不能变成,4,或,8,与一个数的乘积,因此把,32,写成“,84”,,再把,25,和,4,它们两个结合,把,125,和,8,相结合,运用乘法结合率,,4,、本题里面全部是乘法,因此运用乘法的结合律,不能出现“,+”,,错误理解为乘法分配率,这样这道题实际就是,(1258)(425),,学生一看很快就得出结果就是,1000100=100000,。,1253225=125,(,84,),25=(1258)(425)=1000100=100000,。,28,整理课件,十一、,1345-125-875,想:先观察数的特点