资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
第11页 / 共13页
第12页 / 共13页
第13页 / 共13页
亲,该文档总共13页全部预览完了,如果喜欢就下载吧!
点击查看更多>>
资源描述
,朝花夕拾,式题应用,应用问题,实践一刻,作业,数学生活,学习目标,线性规划应用问题,退出,弦 切 角 (一),概念,猜想,证明,应用,练习,作业,小结,*,课题:线性规划的应用问题,课题:线性规划的应用问题,线性规划的应用问题课件,学习目标,目标,2,线性规划应用题,目标,1,线性规划式题应用,目标,生活中的线性规划,学习目标目标2线性规划应用题目标1线性规划式题应用目标生活,朝花夕拾,1,、直线划分平面区域,朝花夕拾1、直线划分平面区域,式题应用,简单式题:,例,1,例,2,例,1,式题应用简单式题:例1例2例1,式题应用,例,1,例,2,例,2,式题应用例1例2例2,应用问题,某基金会准备进行两种组合投资,,稳健型组合投资,每份是由金融投资,70,万元,房地产投资,90,万元,电脑投资,75,万元组成。,进取型组合投资,每份是由金融投资,40,万元,房地产投资,90,万元,电脑投资,150,万元组成。已知每份稳健型组合投资每年获利,25,万元,每份进取型投资每年获利,30,万元,若可用资金中,金融资金不超过,290,万元,房地产资金不超过,450,万元,电脑资金不超过,600,万元,那么这两种组合投资各投入多少份,能使一年获利总额最多?,应用问题 某基金会准备进行两种组合投资,稳健型组合投资,实践一刻,式题练,1,式题练,2,应用题练,式题练,1,实践一刻式题练1式题练2应用题练式题练1,实践一刻,式题练,1,式题练,2,应用题练,式题练,2,实践一刻式题练1式题练2应用题练式题练2,练习:,北京华欣公司计划在今年内同时出售“夜莺牌多功能”电子琴和“,OK,智能型”洗衣机,由于两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大。已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于两种产品有关数据如下表:,试问:怎样确定两种货的供应量,才能使总利润最大,最大利润是多少?,实践一刻,式题练,1,应用题练,式题练,2,应用题练,练习:北京华欣公司计划在今年内同时出售“夜莺牌多功能”,分组实践:,组内实践,分组选题,交流结果,进入教师题库,分组选题,组长定题,每位同学分别实践,组长请抓紧时间,完成后请检查组员答题情况,然后选定代表展示,每组选一位同学演示,其他同学核对和质疑,实践一刻,分组实践:组内实践分组选题交流结果 进入教师题库,分,数学生活,迟到所引起的焦虑可以规划吗?,迟到的经验似乎已成为不少都市人生活的一部分。但对于一个有责任感的赴约者,迟到始终会引起焦虑不安的感觉。利用线形规划,(,linear,programming,),把这种焦虑更具体地描绘出来,或许有助改善迟到的情况。,假若,A,君和,B,君互订以下的商务约会协议:(,一)双方必须在约会时间过后的,30,分钟内到达约会地点,(二)若一方到达时不见对方,最多只会等候,10,分钟。根据这两个条件,设,x,和,y,分别为两人抵达约会地点的时间(约会时间为,0,),便可用以下的不等式,(,inequalities,),把约会的约束条件,(,constraints,),描述出来:,设,I,为焦虑指标,并定义为一 部分比,(,partial variation,),,一部分比与,x,成正比,而另一部分则与,y,成正比,以表示两人约会时须共同承担迟到而引起的焦虑。根据这定义,,I=f(x,y)=ax+by,,,a,与,b,为正常数。,数学生活 迟到所引起,作业,1,、教师题库内自选两题完成,(一个式题,一个应用题),2,、自编一个线性规划的应用题,作业1、教师题库内自选两题完成2、自编一个线性规划的应用题,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6