单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,第二章 控制系统的数学模型,11/15/2024,1,知识点,系统微分方程的建立方法,Laplace变换的定义及性质,传递函数的定义及性质,控制系统中的典型环节及传递函数的数学模型,动态结构图的建立方法及简化,准确求取系统的传递函数,自动控制系统中微分方程、传递函数、动态结构图之间的关系及相互转换,11/15/2024,2,2.1微分方程,数学模型:,描述控制系统变量(物理量)之间动态关系的数学表达式。常用的数学模型有微分方程,传递函数,结构图,信号流图,频率特性以及状态空间描述等。,例如对一个微分方程,若已知初值和输入值,对微分方程求解,就可以得出输出量的时域表达式。据此可对系统进行分析。所以建立控制系统的数学模型是对系统进行分析的第一步也是最重要的一步。,控制系统如按照数学模型分类的话,可以分为线性和非线性系统,定常系统和时变系统。,概述,11/15/2024,3,线性系统:,如果系统满足叠加原理,则称其为线性系统。叠加原理说明,两个不同的作用函数同时作用于系统的响应,等于两个作用函数单独作用的响应之和。,线性系统对几个输入量同时作用的响应可以一个一个地处理,然后对每一个输入量响应的结果进行叠加。,线性定常系统和线性时变系统:,可以用线性定常(常系数)微分方程描述的系统称为线性定常系统。如果描述系统的微分方程的系数是时间的函数,则这类系统为线性时变系统。,宇宙飞船控制系统就是时变控制的一个例子(宇宙飞船的质量随着燃料的消耗而变化)。,概述,11/15/2024,4,古典控制理论中(我们所正在学习的),采用的是单输入单输出描述方法。主要是针对线性定常系统,对于非线性系统和时变系统,解决问题的能力是极其有限的。,非线性系统:,如果不能应用叠加原理,则系统是非线性的,。,下面是非线性系统的一些例子:,概述,11/15/2024,5,第一节 控制系统的微分方程,11/15/2024,6,微分方程的编写应根据组成系统各元件工作过程中所遵循的物理定理来进行。例如:电路中的基尔霍夫电路定理,力学中的牛顿定理,热力学中的热力学定理等。,控制系统的微分方程,11/15/2024,7,控制系统的微分方程,由:,代入得:,这是一个线性定常二阶微分方程。,解:据基尔霍夫电路定理:,输入,输出,L,R,C,i,例2-1:写出RLC串联电路的微分方程。,11/15/2024,8,例2-2 求弹簧-阻尼-质量的机械位移系统的微分方程。输入量为外力F,输出量为位移x。,解:图1和图2分别为系统原理结构图和质量块受力分析图。图中,m为质量,f为粘性阻尼系数,k为弹性系数。,m,f,m,F,F,图2,图1,根据牛顿定理,可列出质量块的力平衡方程如下:,这也是一个两阶定常微分方程。X为输出量,F为输入量。,在国际单位制中,m,f和k的单位分别为:,控制系统的微分方程,11/15/2024,9,例2-3电枢控制式直流电动机,这里输入是电枢电压,u,a,和等效到电机转轴上的负载转矩,M,c,,输出是转速,w,电枢回路方程为,其中,e,a,为反电势,此时激磁电流为常数,所以,C,e,称为电动机,电势常数,C,m,称为电动机,转矩常数,,再根据牛顿定律可得机械转动方程,电机通电后产生转矩,控制系统的微分方程,11/15/2024,10,其中 和,分别称为,电磁时间常数,和,机电时间常数,整理得,分别是,转速与电压传递系数,和,转速与负载,和,传递系数,。这里已略去摩擦力和扭转弹性力。,控制系统的微分方程,11/15/2024,11,需要讨论的几个问题:,1、相似系统和相似量:,我们注意到例2-1和例2-2的微分方程形式是完全 一样的。,这是因为:若令 (电荷),则例2-1式的结果变为:,可见,,同一物理系统有不同形式的数学模型,而不同类型的系统也可以有相同形式的数学模型。,相似系统和相似量,定义,具有相同的数学模型的不同物理系统称为相似系统。,例2-1和例2-2称为力-电荷相似系统,在此系统中,分别与 为相似量。,作用,利用相似系统的概念可以用一个易于实现的系统来模拟相对复杂的系统,实现仿真研究。,11/15/2024,12,2、非线性元件(环节)微分方程的线性化,在经典控制领域,主要研究的是线性定常控制系统。如果描述系统的数学模型是线性常系数的微分方程,则称该系统为线性定常系统,其最重要的特性便是可以应用线性叠加原理,即系统的总输出可以由若干个输入引起的输出叠加得到。,非线性环节微分方程的线性化,11/15/2024,13,若描述系统的数学模型是非线性(微分)方程,则相应的系统称为非线性系统,这种系统不能用线性叠加原理。在经典控制领域对非线性环节的处理能力是很小的。但在工程应用中,除了含有强非线性环节或系统参数随时间变化较大的情况,一般采用近似的线性化方法。对于非线性方程,可在工作点附近用泰勒级数展开,取前面的线性项。可以得到等效的线性环节。,设具有连续变化的非线性函数为:y=f(x),若取某一平衡状态为工作点,如下图中的 。A点附近有点为,,当 很小时,AB段可近似看做线性的。,非线性环节微分方程的线性化,A,B,y,x,0,11/15/2024,14,A,B,y,x,0,设f(x)在 点连续可微,,则将函数在该点展开为泰勒级,数,得:,若 很小,则 ,即,式中,K为与工作点有关的常数,显然,上式是线性方程,,是非线性方程的线性表示。为了保证近似的精度,只能在工,作点附近展开。,非线性环节微分方程的线性化,11/15/2024,15,对于具有两个自变量的非线性方程,也可以在静态工作点附近展开。设双变量非线性方程为:,工作点为,。则可近似为:,式中:,。,为与工作点有关的常数。,阅读教材例2-5 求液压伺服油缸的线性化数学模型。,注意,:,上述非线性环节不是指典型的非线性特性(如间隙、库仑干摩擦、饱和特性等),它是可以用泰勒级数展开的。,实际的工作情况在工作点附近。,变量的变化必须是小范围的。其近似程度与工作点附近的非线性情况及变量变化范围有关。,非线性环节微分方程的线性化,11/15/2024,16,例2-4:,倒立摆系统,非线性环节微分方程的线性化,该系统由小车和安装在小车上的倒立摆构成。倒立摆是不稳定的,如果没有适当的控制力作用到它上面,它将随时可能向任何方向倾倒。这里我们只考虑二维问题,即认为倒立摆只在图所在的平面内运动。,若有合适的控制力u作用于小车上可使摆杆维持直立不倒。这实际是一个空间起飞助推器的姿态控制模型(姿态控制问题的目的是要把空间助推器保持在垂直位置)。,设小车和摆杆的质量分别为,M,和,m,,摆杆长为 ,且重心位于几何,中点处,小车距参考坐标的位置为 ,摆杆与铅垂线的夹角为 ,,摆杆重心的水平位置为 ,垂直位置为,11/15/2024,17,画出倒立摆系统隔离体受力图,非线性环节微分方程的线性化,设摆杆和小车结合部的水平反力和垂直反力为,H,和,V,,略去摆杆与小车、小车与地面的摩擦力。可得方程如下:,摆杆围绕其重心的转动运动,式中J为摆杆围绕其重心的转动惯量,为垂直力关于其重心的力矩,为水平力关于其重心的力矩。,摆杆重心的水平运动,摆杆重心的垂直运动,小车,的水平运动,11/15/2024,18,因为在这些方程中包含 和 ,所以它们是非线性方程。,非线性环节微分方程的线性化,若假设角度 很小,则 和 。可得下列线性化方程:,由和可得 ,由、和得,当忽略,转动惯量,J时,当考虑,转动惯量 时,11/15/2024,19,3.线性系统微分方程的编写步骤:,确定系统和各元部件的输入量和输出量。,对系统中每一个元件列写出与其输入、输出量有关的物理的方程。,对上述方程进行适当的简化,比如略去一些对系统影响小的次要因素,对非线性元部件进行线性化等。,从系统的输入端开始,按照信号的传递顺序,在所有元部件的方程中消去中间变量,最后得到描述系统输入和输出关系的微分方程。,线性系统微分方程的编写步骤,11/15/2024,20,例2-6:编写下图所示的速度控制系统的微分方程。,负载,-,+,-,+,功率,放大器,测速发电机,解:该系统的组成和原理;,该系统的输出量是 ,输入量是 ,扰动量是,线性系统微分方程的编写例子例2-6,11/15/2024,21,线性系统微分方程的编写例子例2-6,消去中间变量:推出 之间的关系:,显然,转速 既与输入量 有关,也与干扰 有关。,各环节微分方程:,运放:,运放:,功率放大:,反馈环节:,电动机环节:,见例2-4,测速,-,运放,运放,功放,电动机,速度控制系统方块图:,11/15/2024,22,线性系统微分方程的编写例子例2-6,对于恒值调速系统,=常量,则 。,转速的变化仅由负载干扰引起。增量表达式如下:,对于随动系统,则 =常数,故:,根据上式可以讨论输出转速跟随给定输入电压的变化情况。,若 和 都是变化的,则对于线性系统应用叠加原理分别讨论两种输入作用引起的转速变化,然后相加。,增量式分析,(上式等号两端取增量):,11/15/2024,23,定义:,如果有一个以时间t为自变量的函数f(t),它的定,义域t0,那么下式即是拉氏变换式:,式中s为复数。记作,一个函数可以进行拉氏变换的充分条件是:,t0时,f(t)=0;,t0时,f(t)分段连续;,。,F(s)象函数,f(t)原函数。,记 为反拉氏变换。,复习拉氏变换,4、复习拉氏变换,11/15/2024,24,线性性质:,微分定理:,积分定理,:(设初值为零),时滞定理:,初值定理:,复习拉氏变换,性质:,11/15/2024,25,终值定理:,卷积定理:,常用函数的拉氏变换:,单位阶跃函数:,单位脉冲函数:,单位斜坡函数:,单位抛物线函数:,正弦函数:,其他函数可以查阅相关表格获得。,复习拉氏变换,11/15/2024,26,5、线性方程的求解:,研究控制系统在一定的输入作用下,输出量的变化,情况。方法有经典法,拉氏变换法和数字求解。,在自动系统理论中主要使用拉氏变换法。,拉氏变换求微分方程解的步骤:,对微分方程两端进行拉氏变换,将时域方程转换为s域的代数方程。,求拉氏反变换,求得输出函数的时域解。,线性方程的求解,11/15/2024,27,例子求例2-6速度控制系统微分方程的解。假设没有负载干扰,并且各项初值均为零。,解速度控制系统微分方程为:,对上式各项进行拉氏变换,得:,即:,当输入已知时,求上式的拉氏反变换,即可求得输出的,时域解。,线性方程的求解(例子),11/15/2024,28,小结,系统微分方程的列写;,相似量、相似系统,非线性环节的线性化;,线性方程的求解(用拉氏变换法);,拉氏变换及性质。,11/15/2024,29,