资源预览内容
第1页 / 共41页
第2页 / 共41页
第3页 / 共41页
第4页 / 共41页
第5页 / 共41页
第6页 / 共41页
第7页 / 共41页
第8页 / 共41页
第9页 / 共41页
第10页 / 共41页
第11页 / 共41页
第12页 / 共41页
第13页 / 共41页
第14页 / 共41页
第15页 / 共41页
第16页 / 共41页
第17页 / 共41页
第18页 / 共41页
第19页 / 共41页
第20页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,管 理 运 筹 学,第十六章 决策分析,1,不确定情况下的决策,2,风险型情况下的决策,3,效用理论在决策中的应用,4,层次分析法,1,第十六章 决策分析,“决策”一词来源于英语,Decision making,,直译为“做出决定”。所谓决策,就是为了实现预定的目标在若干可供选择的方案中,选出一个最佳行动方案的过程,它是一门帮助人们科学地,决策的理论。,2,第十六章决策分析,决策的分类:,按决策问题的重要性分类,按决策问题出现的重复程度分类,按决策问题的定量分析和定性分析分类,按决策问题的自然状态发生分类:,确 定 型 决 策 问 题,在决策环境完全确定的条件下进行。,不 确 定 型 决 策 问 题,在决策环境不确定的条件下进行,决策者对各自然状态发生的概率一无所知。,风 险 型 决 策 问 题,在决策环境不确定的条件下进行,决策者对各自然状态发生的概率可以预先估计或计算出来。,3,构成决策问题的,四个要素:,决策目标、行动方案、自然状态、效益值,行动方案集:A=s,1,s,2,s,m,自然状态集:N=n,1,n,2,n,k,效益(函数)值:,v,=,(s,i,n,j,),自然状态发生的概率P=P(s,j,)j=1,2,m,决策模型的基本结构:,(A,N,P,V),基本结构,(A,N,P,V)常用,决策表、决策树等表示。,第十六章决策分析,4,特征:1、自然状态已知;2、各方案在不同自然状态下的收益,值已知;3、自然状态发生不确定。,例:某公司需要对某新产品生产批量作出决策,各种批量在不,同的自然状态下的收益情况如下表(,收益矩阵,):,1不确定情况下的决策,N,1,(需求量大),N,2,(需求量小),S,1,(大批量生产),30,-6,S,2,(中批量生产),20,-2,S,3,(小批量生产),10,5,自然状态,行动方案,特征:1、自然状态已知;2、各方案在不同自然状态下的收益,值已知;3、自然状态发生不确定。,例:某公司需要对某新产品生产批量作出决策,各种批量在不,同的自然状态下的收益情况如下表(,收益矩阵,):,N,1,(需求量大),N,2,(需求量小),S,1,(大批量生产),30,-6,S,2,(中批量生产),20,-2,S,3,(小批量生产),10,5,自然状态,行动方案,5,一、最大最小准则(悲观准则),决策者从最不利的角度去考虑问题:,先选出每个方案在不同自然状态下的最小收益值(最保险),,然后从这些最小收益值中取最大的,从而确定行动方案。,用,(S,i,N,j,)表示收益值,1不确定情况下的决策,6,二、最大最大准则(乐观准则),决策者从最有利的角度去考虑问题:,先选出每个方案在不同自然状态下的最大收益值(最乐观),,然后从这些最大收益值中取最大的,从而确定行动方案。,用,(S,i,N,j,)表示收益值,1不确定情况下的决策,7,三、等可能性准则 (Laplace准则),决策者把各自然状态发生的机会看成是等可能的:,设每个自然状态发生的概率为 1/事件数,然后计算各行动方,案的收益期望值。,用 E(S,i,)表示第I方案的收益期望值,1不确定情况下的决策,8,四、乐观系数(折衷)准则(Hurwicz胡魏兹准则),决策者取乐观准则和悲观准则的折衷:,先确定一个乐观系数,(01,),然后计算:,CV,i,=,max,(S,i,N,j,)+(1-,)min,(S,i,N,j,),从这些折衷标准收益值CV,i,中选取最大的,从而确定行动方,案。,取,=0.7,1不确定情况下的决策,9,五、后悔值准则(Savage 沙万奇准则),决策者从后悔的角度去考虑问题:,把在不同自然状态下的最大收益值作为理想目标,把各方案的,收益值与这个最大收益值的差称为未达到理想目标的后悔值,然后,从各方案最大后悔值中取最小者,从而确定行动方案。,用a,ij,表示后悔值,构造后悔值矩阵:,1不确定情况下的决策,10,特征:1、自然状态已知;2、各方案在不同自然状态下的收益,值已知;3、自然状态发生的概率分布已知。,一、最大可能准则,在一次或极少数几次的决策中,取概率最大的自然状态,按照,确定型问题进行讨论。,2风险型情况下的决策,11,二、期望值准则,根据各自然状态发生的概率,求不同方案的期望收益值,取其中最大者为选择的方案。,E(S,i,)=,P(N,j,),(S,i,N,j,),2风险型情况下的决策,12,三、决策树法,具体步骤:,(1)从左向右绘制决策树;,(2)从右向左计算各方案的期望值,并将结果标在相应方案节点的上方;,(3)选收益期望值最大(损失期望值最小)的方案为最优方案,并在其它方案分支上打记号。,主要符号,决策点 方案节点 结果节点,2风险型情况下的决策,13,前例,根据下图说明S,3,是最优方案,收益期望值为6.5。,决策,S,1,S,2,S,3,大批量生产,中批量生产,小批量生产,N,1,(需求量大);P(N,1,)=0.3,N,1,(需求量大);P(N,1,)=0.3,N,1,(需求量大);P(N,1,)=0.3,N,2,(需求量小);P(N,2,)=0.7,N,2,(需求量小);P(N,2,)=0.7,N,2,(需求量小);P(N,2,)=0.7,30,-6,20,10,-2,5,4.8,4.6,6.5,6.5,2风险型情况下的决策,14,四、灵敏度分析,研究分析决策所用的数据在什么范围内变化时,原最优决策方,案仍然有效.,前例 取 P(N,1,)=p,P(N,2,)=1-p.那么,E(S,1,)=p,30+(1-p),(-6)=36p-6,p=0.35为转折概率,E(S,2,)=p,2,0+(1-p),(-2)=22p-2,实际的概率值距转,E(S,3,)=p,1,0+(1-p),(+5)=5p+5,折概率越远越稳定,E(S,1,),E(S,2,),E(S,3,),0,1,0.35,p,取S,3,取S,1,2风险型情况下的决策,15,2风险型情况下的决策,在实际工作中,如果状态概率、收益值在其可能发生的变化的范围内变化时,最优方案保持不变,则这个方案是比较稳定的。反之如果参数稍有变化时,最优方案就有变化,则这个方案就不稳定的,需要我们作进一步的分析。就自然状态N,1,的概率而言,当其概率值越远离转折概率,则其相应的最优方案就越稳定;反之,就越不稳定。,16,五、全情报的价值(,EVPI,),全情报:关于自然状况的确切消息。,在前例,当我们不掌握全情报时得到 S,3,是最优方案,数学期望最大值为 0.3*10+0.7*5=6.5万 记为,EV,W0,PI,。,若得到全情报:当知道自然状态为N,1,时,决策者必采取方案S,1,,可获得收益30万,概率0.3;当知道自然状态为N,2,时,决策者必采取方案S,3,,可获得收益5万,概率0.7。于是,全情报的期望收益为,EV,W,PI,=0.3*30+0.7*5=12.5万,那么,,EVPI=EV,W,PI-EV,W0,PI,=12.5-6.5=6万,即这个全情报价值为6万。当获得这个全情报需要的成本小于6万时,决策者应该对取得全情报投资,否则不应投资。,注:一般“全”情报仍然存在可靠性问题。,2风险型情况下的决策,17,六、具有样本情报的决策分析(贝叶斯决策),先验概率:由过去经验或专家估计的将发生事件的概率;,后验概率:利用样本情报对先验概率修正后得到的概率;,在贝叶斯决策法中,可以根据样本情报来修正先验概率,得到后验概率。如此用决策树方法,可得到更高期望值的决策方案。,在自然状态为N,j,的条件下咨询结果为I,k,的条件概率,可用全概率公式计算,再用贝叶斯公式计算,条件概率的定义:乘法公式,2风险型情况下的决策,18,例3、(在例2基础上得来),某公司现有三种备选行动方案。S,1,:大批量生产;S,2,:中批量生产;S,3,:小批量生产。未来市场对这种产品需求情况有两种可能发生的自然状态。N,1,:需求量大;N,2,:需求量小,且N,1,的发生概率即P(N,1,)=0.3;N,2,的发生概率即P(N,2,)=0.7。经估计,采用某一行动方案而实际发生某一自然状态时,公司的收益下表所示,:,2风险型情况下的决策,N,1,N,2,S,1,30,-6,S,2,20,-2,S,3,10,5,现在该公司欲委托一个咨询公司作市场调查。咨询公司调查的结果也有两种,I,1,:需求量大;I,2,:需求量小。并且根据该咨询公司积累的资料统计得知,当市场需求量已知时,咨询公司调查结论的条件概率如下表所示:,自,然,状,态,条,件,概,率,调,查,结,论,N,1,N,2,I,1,P(I,1,/N,1,)=0.8,P(I,1,/N,2,)=0.1,I,2,P(I,2,/N,1,)=0.2,P(I,2,/N,2,)=0.9,我们该如何用样本情报进行决策呢?如果样本情报要价3万元,决策是否要使用这样的情报呢?,19,图16-3,当用决策树求解该问题时,首先将该问题的决策树绘制出来,如图16-3。,为了利用决策树求解,由决策树可知,我们需要知道咨询公司调查结论的概率和在咨询公司调查结论已知时,作为自然状态的市场需求量的条件概率。,2风险型情况下的决策,20,首先,由全概率公式求得联合概率表:,2风险型情况下的决策,联合概率,N,1,N,2,由全概率求得,I,1,0.24,0.07,P(I,1,)=0.31,I,2,0.06,0.63,P(I,2,)=0.69,然后,由条件概率公式,P(N/I)=P(NI)/P(I),求得在调查结论已知时的条件概率表:,条件概率,P(N/I),N,1,N,2,I,1,0.7742,0.2258,I,2,0.0870,0.9130,最后,在决策树上计算各个节点的期望值,结果如图16-4,结论为:当调查结论表明需求量大时,采用大批量生产;当调查结论表明需求量小时,采用小批量生产。,21,10.5302,21.8712,5.435,图16-4,2风险型情况下的决策,22,2风险型情况下的决策,由决策树上的计算可知,公司的期望收益可达到10.5302万元,比不进行市场调查的公司收益6.5万元要高,其差额就是样本情报的价值,记为EVSI。,EVSI=10.5302-6.5=4.0302(万元),所以当咨询公司市场调查的要价低于4.0302万元时,公司可考虑委托其进行市场调查,否则就不进行市场调查。在这里,因为公司要价3万元,所以应该委托其进行市场调查。,进一步,我们可以利用样本情报的价值与前面的全情报的价值(EVPI)的比值来定义样本情报的效率,作为样本情报的度量标准。,样本情报效率=EVSI/EVPI*100%,上例中,样本情报价值的效率为4.0302/6*100%=67.17%,也就是说,这个样本情报相当于全情报效果的67.17%。,多级(两级)决策树问题,如将前面两个决策树进行合并,可以得到一个两级决策问题:首先决策是否要进行市场调查;然后根据调查结果如何安排生产。决策树的求解结果如图16-5。,23,7.53,6.5,10.53-3,S4:不搞市场调查,S5:搞市场调查,1,图16-5,24,效用:,衡量决策方案的总体指标,反映决策者对决策问题各种因素的总体看法。,使用效用值进行决策:,首先把要考虑的因素折合成效用值,然后用决策准则下选出效用值最大的方案,作为最优方案。,例3:求下表显示问题的最优方案(万元):,某公司是一个小型的进出口公司,目前他面临着两笔进口生意,项目,A和B,这两笔生意都需要现金支付。鉴于公司目前财务状况,公司至多做,A、B中的一笔生意,根据以往的经验,各自然状态商品需求量大、中、小,的发生概率以及在各自然状况下做项目A或项目B以及不作任何项目的收益,如下表:,3效用理论在决策中的应用,25,用收益期望值法:,E(S,1,)=0.3,60,+0.5,40,+0.2,(-100)=18万,E(S,2,)=0.3,100,+0.5,(-40),+0
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6