单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,PPT,课程,:,专题八辅助线作法,主讲老师,:,PPT课程:专题八辅助线作法,1,一、添加平行线,利用平行线性质,1,如图,,BED,B,D,,猜想,AB,与,CD,有怎样的位置关系,,并说明理由,解:过点,E,作,EF,AB,,,B,BEF,,,BED,B,D,,,BED,BEF,D,,,又,BED,BEF,DEF,,,D,DEF,,,CD,EF,,,AB,CD,.,一、添加平行线,利用平行线性质解:过点E作EFAB,B,2,2,如图,已知,AB,CD,,,ABE,110,,,DCE,36,,,求,BEC,的大小,解:过,E,点作直线,EF,AB,.,AB,CD,,,EF,CD,,,ABE,BEF,180,,,FEC,DCE,36,,,BEC,BEF,FEC,180,ABE,DCE,180,110,36,106.,2如图,已知ABCD,ABE110,DCE36,3,3,如图为一台灯示意图,其中灯头连接杆,DE,始终和桌面,FG,平行,灯脚,AB,始终和桌面,FG,垂直,,(1),当,EDC,DCB,120,时,求,CBA,;,(2),连杆,BC,,,CD,可以绕着,B,,,C,和,D,进行旋转,灯头,E,始终在,D,左侧,设,EDC,,,DCB,,,CBA,的度数分别为,,,,,,求,,,,,之间的数量关系,3如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,4,5如图,ABAD,CBCD,E,F分别是AB,AD的中点,ABAC,BAC2CAE,,AOECODAOF60,,DCECDE90,2390,,7如图,ABC是等腰直角三角形,BAC90,ABAC,BD平分ABC交AC于点D,CE垂直于BD,交BD的延长线于点E,,(2)由(1)知:EDCPCD180,,4如图,已知AD,BC相交于点O,ABCD,ADCB.,BE AB,FD AD,,6090,ABDCDB(SSS),AC.,EDCDCBCBA,ABCADC(SSS),BD,,又BEDBEFDEF,,CEBD,BECBEM90,,CBD90C,CAE90C,,PCD180D60,PCB120PCD60,,求证:CDADBC.,四、截长补短:一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;,180ABEDCE,二、图中含有已知线段的两个图形显然不全等时(或图形不完整),添加公共边,解:过点E作EFAB,BBEF,,又ADBC,ADCBCD180,,解:,(1),如图,过,C,作,CP,DE,,过,B,作,BH,FG,.,DE,FG,,,PC,FG,,,PC,BH,PCD,180,D,60,,,PCB,120,PCD,60,,,CBH,PCB,60,,,又,AB,FG,,,ABH,FAB,90,,,CBA,CBH,ABH,60,90,150,,,5如图,ABAD,CBCD,E,F分别是AB,AD的中,5,(2),由,(1),知:,EDC,PCD,180,,,PCB,CBH,,,ABH,90,,,EDC,DCB,CBA,EDC,PCD,PCB,(,CBH,ABH,),180,90,90,,,即,90,(2)由(1)知:EDCPCD180,,6,二、图中含有已知线段的两个图形显然不全等时,(,或图形不完整,),,添加公共边,4,如图,已知,AD,,,BC,相交于点,O,,,AB,CD,,,AD,CB,.,求证:,A,C,.,证明:连接,BD,,,在,ABD,和,CDB,中,,ABD,CDB,(SSS),,,A,C,.,二、图中含有已知线段的两个图形显然不全等时(或图形不完整),,7,(ACBBAC),解:过点E作EFAB,BBEF,,一、添加平行线,利用平行线性质,AOCDOE120,,解:过点E作EFAB,BBEF,,(1)当EDCDCB120,BECBEFFEC,5如图,ABAD,CBCD,E,F分别是AB,AD的中点,求证:CDADBC.,EDCDCBCBA,9如图,在ABC中,ABC60,AD,CE分别平分BAC,ACB,求证:ACAECD.,在FDE和ADE中,,CEBD,BECBEM90,,又BEDBEFDEF,,BECDFC(SAS),CECF.,7如图,ABC是等腰直角三角形,BAC90,ABAC,BD平分ABC交AC于点D,CE垂直于BD,交BD的延长线于点E,,3如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,,(ACBBAC),FCEBCE(SAS),12,,又E,F分别为AB,AD的中点,,4如图,已知AD,BC相交于点O,ABCD,ADCB.,四、截长补短:一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;,5,如图,,AB,AD,,,CB,CD,,,E,,,F,分别是,AB,,,AD,的中点,求证:,CE,CF,.,证明:连接,AC,,在,ABC,和,ADC,中,,ABC,ADC,(SSS),,,B,D,,,又,E,,,F,分别为,AB,,,AD,的中点,,BE,AB,,,FD,AD,,,AB,AD,,,BE,DF,,,在,BEC,和,DFC,中,,BEC,DFC,(SAS),,,CE,CF,.,(ACBBAC)5如图,ABAD,CBC,8,三、遇到等腰三角形,可作底边上的高或延长加倍法,(,三线合,一或对折,),6,如图,在,ABC,中,,AB,AC,,,BD,AC,,垂足为,D,.,求证:,BAC,2,CBD,.,解:过,A,作,AE,BC,于,E,,,AB,AC,,,BAC,2,CAE,,,BD,AC,,,BDC,AEC,90,,,CBD,90,C,,,CAE,90,C,,,CBD,CAE,,,BAC,2C,BD,.,三、遇到等腰三角形,可作底边上的高或延长加倍法(三线合解:过,9,7,如图,,ABC,是等腰直角三角形,,BAC,90,,,AB,AC,,,BD,平分,ABC,交,AC,于点,D,,,CE,垂直于,BD,,交,BD,的延长线于点,E,,,求证:,BD,2,CE,.,证明:延长,BA,和,CE,交于点,M,,,CE,BD,,,BEC,BEM,90,,,BD,平分,ABC,,,MBE,CBE,,,在,BME,和,BCE,中,7如图,ABC是等腰直角三角形,BAC90,AB,10,BME,BCE,(ASA),,,EM,EC,MC,,,ABC,是等腰直角三角形,,BAC,MAC,90,,,BA,AC,,,ABD,BDA,90,,,BEC,90,,,ACM,EDC,90,,,BDA,EDC,,,ABE,ACM,,,在,ABD,和,ACM,中,ABD,ACM,(ASA),,,DB,MC,,,BD,2,CE,.,BMEBCE(ASA),EMEC MC,,11,四、截长补短:一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等,四、截长补短:一般地,当所证结论为线段的和、差关系,且这两条,12,8,如图,,AD,BC,,点,E,在线段,AB,上,,ADE,CDE,,,DCE,ECB,.,求证:,CD,AD,BC,.,证明:在,CD,上截取,CF,BC,,连接,EF,,,在,FCE,和,BCE,中,,FCE,BCE,(SAS),,,1,2,,,又,AD,BC,,,ADC,BCD,180,,,DCE,CDE,90,,,2,3,90,,,1,4,90,,,3,4,,,8如图,ADBC,点E在线段AB上,ADECDE,,13,在,FDE,和,ADE,中,,FDE,ADE,(ASA),,,DF,DA,,,CD,CF,DF,,,CD,AD,BC,.,在FDE和ADE中,,14,9,如图,在,ABC,中,,ABC,60,,,AD,,,CE,分别平分,BAC,,,ACB,,求证:,AC,AE,CD,.,证明:在,AC,上取,AF,AE,,连接,OF,,,AD,平分,BAC,,,EAO,FAO,,,在,AEO,与,AFO,中,,AEO,AFO,(SAS),,,AOE,AOF,,,9如图,在ABC中,ABC60,AD,CE分别平分,15,AD,,,CE,分别平分,BAC,,,ACB,,,ECA,DAC,ACB,BAC,(,ACB,BAC,),(180,B,),60,,,则,AOC,180,EC,A,DAC,120,,,AOC,DOE,120,,,AOE,COD,AOF,60,,,则,COF,60,,,COD,COF,,,AD,CE分别平分BAC,ACB,,16,在,FOC,与,DOC,中,,FOC,DOC,(ASA),,,DC,FC,,,AC,AF,FC,,,AC,AE,CD,.,在FOC与DOC中,,17,谢谢!,谢谢!,18,