考点跟踪突破,1,实数及其运算,一、选择题,(,每小题,6,分,,,共,30,分,),1,(,2014,宁波,),下列各数中,,,既不是正数也不是负数的是,(,),A,0,B,1,C.,3,D,2,2,(,2014,湘潭,),下列各数中是无理数的是,(,),A.,2,B,2,C,0,D.,1,3,A,A,3,(,2014,舟山,),2013,年,12,月,15,日,,,我国,“,玉兔号,”,月球车顺利抵达月球表面月球离地球平均距离是,384 400 000,米,,,数据,384 400 000,用科学记数法表示为,(),A,3.844,10,8,B,3.844,10,7,C,3.844,10,6,D,38.44,10,6,A,4,(,2014,菏泽,),下列数中比,1,大的数是,(,),A,3,B,10,9,C,0,D,1,C,5,(,2014,盐城,),已知整数,a,1,,,a,2,,,a,3,,,a,4,,,,,满足下列条件:,a,1,0,,,a,2,|,a,1,1|,,,a,3,|,a,2,2|,,,a,4,|,a,3,3|,,,,,依次类推,,,则,a,2014,的值为,(),A,1006 B,1007,C,1008 D,2014,B,二、填空题,(,每小题,6,分,,,共,30,分,),6,(,2013,杭州,),3,2,3.14,3,(,9.42,),_,_,7,(,2014,河北,),若实数,m,,,n,满足,|m,2|,(,n,2014,),2,0,,,则,m,1,n,0,_,_,8,(,2012,德州,),5,1,2,_,_,1,2,.,(,填,“,”“,”,或,“,”,),0,9,(,2014,娄底,),按照如图所示的操作步骤,,,若输入的值为,3,,,则输出的值为,_,55,10,(,2014,白银,),观察下列各式:,1,3,1,2,1,3,2,3,3,2,1,3,2,3,3,3,6,2,1,3,2,3,3,3,4,3,10,2,猜想,1,3,2,3,3,3,10,3,_,55,2,三、解答题,(,共,40,分,),11,(,6,分,),计算:,(,1,),(,2014,成都,),9,4sin30,(,2014,?,),0,2,2,;,(,2,),(,2014,梅州,),(,?,1,),0,|2,2,|,(,1,3,),1,8,.,解:原式,2,12,(,8,分,),(,2012,广东,),定义:可以表示为两个互质整数的商的形,式,的数称为有理数,,,整数可以看作分母为,1,的有理数;反之为无理,数,如,2,不能表示为两个互质的整数的商,,,所以,2,是无理数,可以这样证明:设,2,a,b,,,a,与,b,是互质的两个整数,,,且,b,0.,则,2,a,2,b,2,,,a,2,2b,2,.,因为,2b,2,是偶数,,,所以,a,2,是偶数,,,则,a,是不为,0,的偶数,设,a,2n,(,n,是整数,),,,所以,b,2,2n,2,,,所以,b,也是偶数,,,与,a,,,b,是互质的整数矛盾,所以,2,是无理数,仔细阅读上文,,,然后请证明:,5,是无理数,解:证明:设,5,a,b,,,a,与,b,是互质的两个整数,,,且,b,0,,,则,5,a,2,b,2,,,a,2,5b,2,.,因为,5b,2,是,5,的倍数,,,所以,a,2,是,5,的,倍数,,,所以,,,a,不为,0,且为,5,的倍数,设,a,5n,(,n,是整数,),,,所以,b,2,5n,2,,,所以,b,也为,5,的倍数,,,与,a,,,b,是互质的,整数矛,盾,所以,5,是无理数,13,(8,分,),在数,1,,,2,,,3,,,,,2014,前添符号,“,”,和,“,”,,,并依次运算,,,所得结果可能的最小非负数是多少?,解:因为若干个整数和的奇偶性,,,只与奇数的个数有关,,,所以在,1,,,2,,,3,,,,,2014,之前任意添加符号,“,”,或,“,”,,,不会改变和的奇偶性在,1,,,2,,,3,,,,,2014,中有,20142,个奇数,,,即有,1007,个奇数,,,所以任意添加符号,“,”,或,“,”,之后,,,所得的代数和总为奇数,,,故最小非负数不小于,1.,现考虑在自然数,n,,,n,1,,,n,2,,,n,3,之间添加符号,“,”,或,“,”,,,显然,n,(n,1),(n,2),(n,3),0.,这启发我们:将,1,,,2,,,3,,,,,2014,每连续四个数分为一组,,,再按上述规则添加符号,,,即,(1,2,3,4),(5,6,7,8),(2009,2010,2011,2012),2013,2014,1.,所以,,,所求最小非负数是,1,14,(8,分,),(,2014,安徽,),观察下列关于自然数的等式:,(1)3,2,4,1,2,5,(2)5,2,4,2,2,9,(3)7,2,4,3,2,13,根据上述规律解决下列问题:,(1),完成第四个等式:,9,2,4,(4),2,(17),;,(2),写出你猜想的第,n,个等式,(,用含,n,的式子表示,),,,并验证其正确性,解:第,n,个等式为,(2n,1),2,4n,2,4n,1.,左边,4n,2,4n,1,4n,2,4n,1,右边,,,第,n,个等式成立,15,(10,分,),已知数,14,的小数部分是,b,,,求,b,4,12b,3,37b,2,6b,20,的值,