资源预览内容
第1页 / 共47页
第2页 / 共47页
第3页 / 共47页
第4页 / 共47页
第5页 / 共47页
第6页 / 共47页
第7页 / 共47页
第8页 / 共47页
第9页 / 共47页
第10页 / 共47页
第11页 / 共47页
第12页 / 共47页
第13页 / 共47页
第14页 / 共47页
第15页 / 共47页
第16页 / 共47页
第17页 / 共47页
第18页 / 共47页
第19页 / 共47页
第20页 / 共47页
亲,该文档总共47页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,工程弹塑性力学,塑性位势理论,-,-,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,王刚,-,弹塑性力学,-,弹塑性本构方程,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,-,*,弹塑性力学本构关系,1,-,弹塑性力学本构关系1-,附加应力对附加应变负做功,即,附加应力对附加应变做功为非负,即有,(1),稳定材料与非稳定材料,稳定材料,非稳定材料,(应变硬化和理想塑性材料),(应变软化材料),德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料,而依留申既适用于稳定材料,又适用于不稳定材料。,-,附加应力对附加应变负做功,即附加应力对附加应变做功为非负,即,(2),德鲁克塑性公设的表述,德鲁克公设,可陈述为:对于处在某一状态下的稳定材料的质点,(,试件,),,借助于一个外部作用在其原有应力状态之上,缓慢地施加并卸除一组附加压力,在附加应力的施加和卸除循环内,外部作用所作之功是非负的。,设材料单元体经历任意应力历史后,在应力,ij,0,下处于平衡,即开始应力,ij,0,在加载面内,然后在单元体上缓慢地施加一个附加力,使,ij,0,达到,ij,,刚好在屈服面上,再继续加载到,ij,+,d,ij,,在这一阶段,将产生塑性应变,d,ij,p,,最后应力又卸回到,ij,0,。若整个应力循环过程中,附加应力,d,ij,所作的塑性功不小于零,即附加应力的塑性功不出现负值,则这种材料就是稳定的,这就是,德鲁克公设,。,-,(2)德鲁克塑性公设的表述 德鲁克,在应力循环中,外载所作的功为:,不论材料是不是稳定,上述总功不可能是负的,不然,我们可通过应力循环不断从材料中吸取能量,这是不可能的。要判断材料稳定必须依据德鲁克公设,即附加应力所作的塑性功不小零得出,由于弹性应变,ij,e,在应力循环中是可逆的,因而,于是有:,-,在应力循环中,外载所作的功为:不论材料是不是稳定,上述总功不,(3),德鲁克塑性公设的重要推论,屈服面的外凸性,塑性应变增量方向与加载曲面正交,-,(3)德鲁克塑性公设的重要推论屈服面的外凸性塑性应变增量方,1,屈服曲面的外凸性,此式限制了屈服面的形状:,对于任意应力状态,应力增量方向与塑性应变向量之间所成的夹角不应该大于,90,稳定材料的屈服面必须是凸的,.,(a),满足稳定材料的屈服面,(b),不满足稳定材料的屈服面,-,1 屈服曲面的外凸性此式限制了屈服面的形状:稳定材料的屈服,2,塑性应变增量向量与屈服面法向平行,加载面,切平面,必与加载面的外法线重合,否则总可以找到,A,0,使,A,0,Ad,p,0,不成立,(,如右图,),。,标量,d,,称为塑性因子,表明,塑性应变分量,ij,之间的比例可由在加载面上,的位置确定。,加载准则,意义:只有当应力增量指向加载面的外部时才能产生塑性变形。,-,2 塑性应变增量向量与屈服面法向平行加载面切平面必与加载,3,德鲁克塑性公设的评述,德鲁克公设的适用条件:,(,1,),应力循环中外载所作的真实功与,ij,0,起点无关;,应力循环中外载所作真实功与附加应力功,(2),附加应力功不符合功的定义,并非真实功,-,3德鲁克塑性公设的评述德鲁克公设的适用条件:(1)应力循环中,(,4,),德鲁克公设的适用条件:,ij,0,在塑性势面与屈服面之内时,德鲁克公设成立;,ij,0,在塑性势面与屈服面之间时,德鲁克公设不成立;,附加应力功为非负的条件,(,3,),非真实物理功不能引用热力学定律;,势面线,屈服面,(,5,),金属材料的塑性势面与屈服面基本一致。,-,(4)德鲁克公设的适用条件:附加应力功为非负的条件(3)非真,3.1.3,依留申塑性公设的表述,依留申塑性公设,:,在弹塑性材料的一个应变循环内,外部作用做功是非负的,如果做功是正的,表示有塑性变形,如果做功为零,只有弹性变形发生。,设材料单元体经历任意应力历史后,在应力,ij,0,下处于平衡,即初始的应变,ij,0,在加载面内,然后在单元体上缓慢地施加荷载,使,ij,达到屈服面,再继续加载达到应变点,ij,+,d,ij,,此时产生塑性应变,d,ij,p,。然后卸载使应变又回到原先的应变状态,ij,0,,并产生了与塑性变量所对应的残余应力增量,d,ij,p,。,-,3.1.3 依留申塑性公设的表述 依留,残余应力增量与塑性应变增量存在关系:,式中,,D,为弹性矩阵。,根据依留申公设,在完成上述应变循环中,外部功不为负,即,只有在弹性应变时,上述,W,I,=0,。,根据,Druker,塑性公设,可将,Druker,塑性公设改写成:,-,残余应力增量与塑性应变增量存在关系:式中,D为弹性矩阵。根据,由图,(a),可知,对于弹性性质不随加载面改变的非耦合情况,外部作用在应变循环内做功,WI,和应力循环所作的外部功之间仅差一个正的附加项:,因此可将应变循环所作的外部功,写成,上式表明,如果德鲁克塑性公设成立,,W,D,0,,则依留申塑性公设也一定成立,反之,依留申塑性公设成立,并不要求,W,D,0,,也就是说,德鲁克塑性公设是依留申塑性公设的充分条件,而不是必要条件。,A,B,C,D,当应力点由,A,到,B,时,,d,0,塑性变形,d,p,0,,总变形,d,0,-,由图(a)可知,对于弹性性质不随加载面改变的非耦合情况,外部,应变空间加载面外凸,加载准则,(,取大于号表示有新的塑性变形发生,),塑性势面与屈服面相同,根据 关于 的正交法则,可得:,由应力空间中的屈服与应变空间中屈服面的转换关系,可得:,结合,可得:,-,应变空间加载面外凸加载准则(取大于号表示有新的塑性变形发生,3.1.4,塑性位势理论与,流动法则,与弹性位势理论相类似,,Mises,于,1928,年提出塑性位势理论。他假设经过应力空间的任何一点,M,,必有一塑性位势等势面存在,其数学表达式称为塑性位势函数,记为:,或,式中,,为硬化参数。,塑性应变增量可以用塑性位势函数对应力微分的表达式来表示,即:,-,3.1.4 塑性位势理论与流动法则 与弹性位势理论相类,上式就称为,塑性位势理论,。它表明一点的塑性应变增量与通过该点的塑性势面存在着正交关系,这就确定了应变增量的方向,也就确定了塑性应变增量各分量的比值。,流动规则也称为正交定律,是确定塑性应变增量各分量的比值,也即塑性增量方向的一条规定。上式是流动规则的一种表示形式,另外还有另一种表示形式:,它表明塑性应变增量与通过该点的屈服曲面成正交关系。,-,上式就称为塑性位势理论。它表明一点的塑性应变增量与通,与德鲁克公设表达式比较,可以看出,服从于德鲁克公设的材料,塑性势函数,g,就是屈服函数,。即,g,=,,,由此得到的塑性应力应变关系通常称为与加载条件,相关联的流动法则,。如果,g,,即屈服面与塑性应变增量不正交,则其相应的塑性应力应变关系称为,非关联流动法则,。,在应变空间,流动规则可用下式表示:,和,都为非负的比例系数。,-,与德鲁克公设表达式比较,可以看出,服从于德鲁克公设的,3.2,硬化规律,塑性模型三要素,屈服条件,流动法则,硬化规律,判断何时达到屈服,屈服后塑性应变增量的方向,也即各分量的比值,决定给定的应力增量引起的塑性应变增量大小,-,3.2 硬化规律塑性模型三要素屈服条件流动法则硬化规律判断何,硬化规律:加载面在应力空间中的位置、大小和形状的变化规律。(确定加载面依据哪些具体的硬化参量而产生硬化的规律称为硬化定律),硬化模型:实际土体硬化规律,+,简化假设(如采用等值面硬化理论,主应力方向不旋转,加载面形状不变等),金属材料:采用等向强化和随动强化;,岩土材料:静力问题采用等向强化;循环荷载,和动力问题采用随动强化或混合强化,常用模型,-,硬化规律:加载面在应力空间中的位置、大小和形状的变化规律。(,3.2.1,等向强化模型,这种模型无论在哪个方向加载拉伸和压缩强化总是相等地产生和开展;在复杂加载条件下,即表示应力空间中作形状相似的扩大,如图中,OABDDE,代表等向强化,图中,B,与,D,点所对应的应力值均为,s,(,指绝对值,),,在这种情况下,压缩屈服应力和弹性区间都随着材料强化而增大。,-,3.2.1 等向强化模型这种模型无论在哪个方向加载拉伸和压缩,-,-,在应力空间中,这种后继屈服面的大小 只与最大的应力状态有关,而与中间的加载路径无关。在右图中,路径,1,与路径,2,的最终应力 状态都刚好对应于加载过程中最大应力状态,因此两者的最终后继屈服是一样的;而路径,3,的最终后继屈服面由加载路径中最大应力状态来定。,-,在应力空间中,这种后继屈服面的大小 只与最大,3.2.2,随动强化模型,图中,OABCDE,代表随动强化模型,弹性卸载区间是衬始屈服应力,s,的两倍。根据这种模型,材料的弹性区间保持不变,但是由于拉伸时的强化而使压缩屈服应力幅值减小。,与等向强化模型不同,随动强化模型是考虑包辛格效应的。在单向拉压情况下,随动强化模型可以用下式表示:,-,3.2.2 随动强化模型 图中OABCDE代表随,包辛格逆效应(,Bauschinger,)分直接包辛格效应及包辛格逆效应。直接包辛格效应指拉伸后钢材纵向压缩屈服强度小于纵向拉伸屈服强度,如图,1,所示;包辛格逆效应在相反的方向产生相反的结果,如图,2,所示。,-,包辛格逆效应(Bauschinger)分直接包辛格效应及包辛,普拉格将随动强化模型推广到复杂应力状态中,他假定在塑性变形过程中,屈服面形状和大小都不改变,只是在应力空间内作刚体平移。,-,普拉格将随动强化模型推广到复杂应力状态中,他假定在塑性变形过,3.2.3,混合强化模型,运动硬化和等向硬化的组合,可以构成更一般的硬化模型,称为混合强化模型,这时,后继屈服面既有位置的改变,也产生均匀的膨胀。,等向强化,混合强化,随动强化,(,运动强化,),初始屈服面,-,3.2.3 混合强化模型 运动硬化和等向硬化的,3.2.4,加工硬化规律,加工硬化规律是决定一个给定的应力增量引起的塑性应变增量的一条规则,在流动规律中,,d,这个因素可以假定为:,式中,,A,为硬化参数,H,的函数。,不同的学者曾建议不同的硬化规律来计算,A,的数值,常用的硬化规律有下列几种:,-,3.2.4 加工硬化规律 加工硬化规律是决定一个,塑性功,W,p,硬化定律:,矩阵形式:,由,得:,-,塑性功Wp硬化定律:矩阵形式:由得:-,塑性应变,ij,p,硬化定律:,进一步有:,由,得:,-,塑性应变ijp硬化定律:进一步有:由得:-,塑性体应变,v,p,硬化定律,设,广义塑性力学中,如果取,于是:,矩阵形式:,由,则有:,-,塑性体应变vp 硬化定律设广义塑性力学中,如果取于是:矩,3.3,弹塑性本构关系,屈服条件,流动法则,硬化规律,判断何时达到屈服,屈服后塑性应变增量的方向,也即各分量的比值,决定给定的应力增量引起的塑性应变增量大小,本节内容,塑性本构关系,弹性本构关系,弹塑性本构关系,-,3.3 弹塑性本构关系屈服条件流动法则硬化规律判断何时达到屈,塑性增量理论又称为塑性流动理论,它把塑性变形看成非线性流动。塑性增量理论把应变增量分为弹性应变增量和塑性应变增量两部分,即式中,弹性应变增量应用广义虎克定律 计算,塑性应变增量根据塑性增量理论计算。塑性增量理论主包括三个部分:关于屈服面理论,关于流动规则理论,关于加工硬化,(,或软化,),理论。应用弹塑性增量理论计算塑性应变:首先,要确定材料的屈服条件,对加工硬化材料,需要确定材料是否服从 相关联流动规则。若材料服从不相联流动规则,沿需确定材料的塑性势函数。然后,还需要确定材料的硬化或软化规律。最后可运用流动规则理论确定塑性应变增量的方向,根据硬化规律计算塑性应变增量的大小。,3.3.1,塑性增量理论,-,塑性增量理论又称为塑性流动理论,它把塑性
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6