资源预览内容
第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
第9页 / 共21页
第10页 / 共21页
第11页 / 共21页
第12页 / 共21页
第13页 / 共21页
第14页 / 共21页
第15页 / 共21页
第16页 / 共21页
第17页 / 共21页
第18页 / 共21页
第19页 / 共21页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,二级,三级,四级,五级,*,*,第二十三章,旋转,23.1,图形的旋转,第,2,课时,旋转作图,第二十三章 旋转23.1 图形的旋转第2课时 旋转作图,1,课堂讲解,旋转作图,用旋转变换设计图案,2,课时流程,逐点,导讲练,课堂小结,作业提升,1课堂讲解旋转作图2课时流程逐点课堂小结作业提升,我们上节课已经学习了旋转的概念、旋转的性质,这为我们本节课学习奠定了一定的基础,.,这节课我们就应用上节课所学的知识展现你的艺术风采,.,我们上节课已经学习了旋转的概念、旋转的性质,这为我们,1,知识点,旋转作图,简单旋转作图的一般步骤:,(1),找出图形的,关键点,;,(2),确定,旋转中心,旋转方向,和,旋转角,;,(3),将关键点与旋转中心连接起来,然 后按旋转方向,分别将它们旋转一个角,得到关键点的,对应点,;,(4),按照原图形的顺序连接这些对应点,所得到的图,形就是,旋转后的图形,知,1,讲,1知识点旋转作图 简单旋转作图的一般步骤:知1讲,例,1,如图(,1,),,E,是正方形,ABCD,中,CD,边上任意一点,以点,A,为中,心,把,ADE,顺时针旋转,90,,画出旋转后的图形,.,分析:,关键是确定,ADE,三个顶点的对应点,,即它们旋转后的位置,.,解:,因为点,A,是旋转中心,,所以它的对应点是它本身,.,正方形,ABCD,中,,AD,=,AB,,,DAB,=90,,,所以旋转后点,D,与点,B,重合,.,设点,E,的对应点为点,E,.,因为旋转后的图形,与旋转前的图形全等,所以,ABE,=,ADE,=90,,,BE,=,DE,.,因此,在,CB,的延长线上取点,E,,使,BE,=,DE,,则,ABE,为旋转后的图形(图(,2,),.,知,1,讲,(来自教材),图(,1,),图(,2,),例1 如图(1),E是正方形ABCD中CD边上任意一点,以点,例,2,如图(,1,),,ABC,绕点,O,旋转,使点,A,旋转到点,D,处,画出,顺时针旋转后的三角形,并写出简要作法,导引:,抓住“关键点”,A,,,B,,,C,,,D,,旋转中心,O,,,旋转角,AOD,这些要素,按步骤“连,转,截,连”即可得出所求作的三角形,解:,作法:,(1),连接,OA,,,OB,,,OC,,,OD,;,(2),分别以,OB,,,OC,为边作,BOM,CON,AOD,;,(3),分别在,OM,,,ON,上截取,OE,OB,,,OF,OC,;,(4),依次连接,DE,,,EF,,,FD,;,即:,DEF,就是所求作的三角形,,如图(,2,)所示,知,1,讲,图(,1,),图(,2,),例2 如图(1),ABC绕点O旋转,使点A旋转到点D处,,总,结,知,1,讲,在旋转作图时,要紧扣以下三点:,(1),对应点到旋转中心的距离相等;,(2),旋转的角度相等;,(3),旋转的方向相同,总 结知1讲 在旋转作图时,要紧扣以下三点:(1)对,知,1,练,1,如图,将线段,AB,绕点,O,顺时针旋转,90,得到线段,A,B,,那么,A(,2,,,5),的对应点,A,的坐标是,(,),A,(2,,,5),B,(5,,,2),C,(2,,,5),D,(5,,,2),知1练1 如图,将线段AB绕点O顺时针旋转90得到线段A,2,如图,,ABC,在直角坐标平面内,三个顶点的坐,标分别为,A,(,1,,,2),,,B,(,2,,,1),,,C,(1,,,1)(,正方形,网格中每个小正方形的边长是,1,个单位长度,),(1),A,1,B,1,C,是,ABC,绕点,_,逆时针旋转,_,度得到的,点,B,1,的坐标是,_,;,(2),求出线段,AC,在旋转过程中所扫过的面积,(,结果保,留,).,知,1,练,2 如图,ABC在直角坐标平面内,三个顶点的坐知1练,知,1,练,(来自教材),3,分别画出,ABC,绕点,O,逆时针旋转,90,和,180,后的图形,.,知1练(来自教材)3 分别画出ABC绕点O逆时针旋,2,知识点,用旋转变换设计图案,知,2,导,让我们一起来欣赏一下美丽的图案,体会一下旋转的奥秘你们猜猜旋转到底和什么有关呢?,问,题,2知识点用旋转变换设计图案知2导 让我们一起来欣赏一,知,2,导,O,O,(,1,)旋转中心不变,改变旋转角(如图),知2导OO(1)旋转中心不变,改变旋转角(如图),知,2,导,O,1,O,2,(,2,)旋转角不变,改变旋转中心,知2导O1O2(2)旋转角不变,改变旋转中心,知,2,导,(,3,)美丽的图案是这样形成的,知2导(3)美丽的图案是这样形成的,知,2,导,归,纳,我们可以利用旋转中心不变,改变旋转角;旋转角不变,改变旋转中心设计许多美丽的图案,.,知2导归 纳 我们可以利用旋转中心不变,改变旋转角;,例,3,如图(,1,)是某一种花的花瓣和中心,现以,O,为旋转,中 心画出分别旋转,45,,,90,,,135,,,180,,,225,,,270,,,315,的这种花的图形,解:,如图(,2,),.,知,2,讲,O,O,图(,1,),图(,2,),例3 如图(1)是某一种花的花瓣和中心,现以 O 为旋转,总,结,知,2,讲,本题是将基本图形按旋转图形的作法,分别按七个角度作旋转图形,.,作旋转图形时注意旋转三要素:旋转中心、旋转方向、旋转角,.,总 结知2讲 本题是将基本图形按旋转图形的作法,,知,2,练,如图,在图中,能通过旋转得到右侧图形的有,(,),A,B,C,D,知2练如图,在图中,能通过旋转得到右侧图形的有(,知,2,练,2,把一个三角形进行旋转:,(1),选择不同的旋转中心,不同的旋转角,看看旋,转的效果;,(2),改变三角形的形状,看看旋转的效果,.,(来自教材),知2练2 把一个三角形进行旋转:(来自教材),知,2,练,(来自教材),3,下面的图形是由一个基本的图形经过旋转得到的,分别指出它们的旋转中心和旋转角,.,知2练(来自教材)3 下面的图形是由一个基本的图形经过旋,开始,旋转要素分析,关键点选择,关键点旋转,旋转后关键点连线,结束,有时,旋转中心以及旋转方向与角度不是明显告知的,需要化未知为已知,.,线段的端点、多边形顶点、折线的连接点、线段与曲线的连接点、圆或圆弧或扇形的圆心,.,注意连接顺序,开始旋转要素分析关键点选择关键点旋转旋转后关键点连线结束,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6