资源预览内容
第1页 / 共45页
第2页 / 共45页
第3页 / 共45页
第4页 / 共45页
第5页 / 共45页
第6页 / 共45页
第7页 / 共45页
第8页 / 共45页
第9页 / 共45页
第10页 / 共45页
亲,该文档总共45页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,氨基酸工业代谢控制发酵,课程教学的基本要求,了解氨基酸发酵行业发展现状与中国氨基酸行业存在问题,氨基酸发酵行业发展方向,掌握谷氨酸的生物合成途径和谷氨酸发酵调节机制,掌握谷氨酸细胞膜渗透性的控制方法,了解谷氨酸生产菌的主要特征以及谷氨酸生产菌在发酵过程中的形态变化,掌握谷氨酸发酵的代谢控制育种策略,第一节 氨基酸工业现状及发展方向,近,40,多年来,国内外在研究、开发和应用氨基酸方面均取得重大进展,新发现的氨基酸种类和数量已由,20,世纪,60,年代,50,种左右,发展到,20,世纪,80,年代的,400,种,目前已达,1000,多种。其中用于药物的氨基酸及氨基酸衍生物的品种达,100,多种。,氨基酸分为两大类,即蛋白质氨基酸和非蛋白质氨基酸。,氨基酸中有,8,种氨基酸人体本身不能合成,只能从食物的蛋白质中摄取,称为必需氨基酸,它们是,L-,赖氨酸、,L-,色氨酸、,L-,苏氨酸、,L-,缬氨酸、,L-,亮氨酸、,L-,异亮氨酸、,L-,苯丙氨酸和,L-,蛋氨酸。,还有两种半必需氨基酸,即精氨酸和酪氨酸。,氨基酸的生产方法,抽提法(水解蛋白质),化学合成法,生物法(包括直接发酵法和酶转化),目前绝大多数氨基酸是以发酵法或酶法生产的,谷氨酸发酵的历史,1866,年德国化学家里豪森利用硫酸水解小麦面筋,分离到一种酸性氨基酸,依据原料的取材,将此氨基酸命名为谷氨酸,1872,年赫拉西维茨等用酪蛋白也制取了谷氨酸,1890,年沃尔夫利用,-,酮戊酸经溴化后合成,DL-,谷氨酸。日本池田菊苗教授在探讨海带汁的鲜味时,提取了谷氨酸,并在,1908,年开始制造商品味之素,1910,年日本味之素公司用水解法生产谷氨酸。,1936,年美国从甜菜废液,(,司蒂芬废液,),中提取谷氨酸。,氨基酸发酵的现状,自从发酵法生产谷氨酸成功以后,世界各国纷纷开展氨基酸发酵的研究与生产,产量增长很快。,2000,年氨基酸产量达,237,万吨,销售额接近,45,亿美元,占生物技术产品销售额的,7,。,目前氨基酸产业发展较快的国家是美国、日本和中国。,我国氨基酸发酵的发展,我国氨基酸生产最早在,1922,年用酸法水解面筋生产谷氨酸钠即味精,在上海开办了天厨味精厂,该味精的制造方法曾向美、英、法申请专利,并取得了专利权。并先后建立了沈阳味精厂、青岛味精厂和天津味精厂,规模均很小,,1949,年全国味精总产量不到,500,吨。,1965,年发酵法生产味精取得成功,带动了其他氨基酸的研究开发。,1965,年以后,我国味精生产全部采用以淀粉质或糖蜜为原料的微生物发酵工艺,大大的促进了生产的发展,到,1985,年全国味精生产企业达到,140,家。随着酶制剂的应用和生产工艺及装备的改进,技术水平不断提高,进一步推动了味精生产的快速发展。,发酵法,L-,赖氨酸生产起步于,20,世纪,70,年代,当时仅有上海天厨味精厂少量生产,以实用为主,,1981,年在广西建成年产,100,吨食品级,L-,赖氨酸试验工厂,于,1987,年投产。,氨基酸发酵的发展动向,新技术和工艺的开发应用,1.,现代生物技术在氨基酸工业中的应用,2.,生物化工技术在氨基酸工业中的应用,新产品的开发、新应用领域的拓展,1.,医药中间体,2.,肽类,3.,多聚氨基酸,4.,氨基酸系表面活性剂,第二节 微生物代谢控制发酵,微生物代谢调节,1,、时序调节,(temporal regulation),微生物对生长、发育、分化不同生理时期的代谢调节,2,、适应调节,微生物对细胞内外环境的变化作出应答性调节,微生物的经济化学与合目的性,Economic Biochemistry,(经济化学):微生物利于生存发生的所有生化反应皆有精确计算,有很高经济效益,Telenomic,(合目的性):微生物按需要有目的进行物质合成的能力,一、代谢控制发酵的定义,代谢控制发酵:微生物正常代谢调节,不过量积累初级代谢产物;人为解除正常代谢调节,而大量积累初级代谢产物的发酵方式。,代谢控制发酵方法,:,1,、发酵条件控制,2,、菌种遗传改造,1,、分解代谢降解物阻遏,分解代谢降解物阻遏:几种底物同时存在时,易利用对难利用或利用快对利用慢底物分解的抑制作用。,2,、解除分解代谢降解物阻遏的技术与方法,发酵条件控制,加入安慰诱导物:如,Lac,结构类似物,IPTG,抗降解物阻遏突变株的选育,加入高浓度底物筛选仍产生大量目的产物的突变株,二、分解代谢降解物阻遏,反馈调节作用,1,、终产物反馈阻遏和反馈抑制,野生型菌株,“,A,”,氨基酸合成操纵子模型,AR,P,O,A,结构基因,无活性,repressor,A,RNA,聚合酶,反馈阻遏,活性,A,合成酶系(,E1,E2,),A,反馈抑制,超过生理需要量,野生型菌株酶合成水平的反馈阻遏,野生型菌株酶活性水平的反馈抑制,过量,A,作用效应物位点,酶构型变化,影响酶活性中心而失活,Gene,编码酶,效应物位点 过量,A,酶活中心,反馈阻遏与反馈抑制比较,反馈阻遏,反馈抑制,控制对象,酶合成,酶活性,控制量,终产物浓度,终产物浓度,控制水平,转录水平,酶构象变化,控制装置,终产物与阻遏蛋白亲和,终产物与控制酶构象的部位亲和,控制装置的动作,阻遏蛋白与操纵子基因结合,不转录,mRNA,酶构型变化,活性中心失活,形成控制,开关控制,酶活性大小,控制反应,迟缓,粗控制,迅速,精控制,细胞经济,超高效益,高效益,2,、解除反馈阻遏、反馈抑制突变株的选育,野生型菌株,诱变,解除反馈调节突变株,AR,-,或,AO,-,AR,-,AO,-,酶基因突变,解除反馈调节突变株可以大量积累末端产物,筛选方法:,解除,Lys,反馈调节突变株筛选,野生型菌株,诱变,菌细胞,正常反馈调节型,解除反馈调节突变型,第三节,谷氨酸的生物合成途径,生产谷氨酸的主要菌株,生成谷氨酸的主要酶反应,谷氨酸生物合成的理想途径,谷氨酸发酵的代谢途径,Glu,发酵常用菌种,谷氨酸棒杆菌,(,C.glutamicum,),北京棒杆菌,(,C.peiking,AS.1229),黄色短杆菌,(,Brevibacterium flavum,),乳糖发酵短杆菌,(,B.lactofermentum,),谷氨酸的生物合成包括,糖酵解作用(,glycolysis,EMP,途径),戊糖磷酸途径(,pentose phosphate pathway,,,HMP,途径),三羧酸循环(,tricarboxylic acid cycle,),乙醛酸循环,(glyoxylate cycle),丙酮酸羧化支路(,CO,2,固定反应)等,由葡萄糖生物合成谷氨酸的理想途径:,A,?,B,?,谷氨酸生物合成的理想途径,谷氨酸发酵的代谢途径,生成的丙酮酸,一部分在丙酮酸脱氢酶系的作用下氧化脱羧生成乙酰,CoA,,另一部分经,CO,2,固定反应生成草酰乙酸或苹果酸,催化,CO,2,固定反应的酶有丙酮酸羧化酶、苹果酸酶和磷酸烯醇式丙酮酸羧化酶。,草酰乙酸与乙酰,CoA,在柠檬酸合成酶催化作用下,缩合成柠檬酸,进入三羧酸循环,柠檬酸在顺乌头酸酶的作用下生成异柠檬酸,异柠檬酸再在异柠檬酸脱氢酶的作用下生成,-,酮戊二酸,,-,酮戊二酸是谷氨酸合成的直接前体,。,-,酮戊二酸在谷氨酸脱氢酶作用下经还原氨基化反应生成谷氨酸,CO,2,固定酶系活力强,Citrate synthase,Aconitase,ICDH,GDH,酶活力强,乙醛酸循环弱,异柠檬酸裂解酶活力欠缺或微弱,-,酮戊二酸氧化能力缺失或微弱,谷氨酸脱氢酶能力强,控制谷氨酸合成的重要措施,乙醛酸循环的作用,谷氨酸发酵的代谢途径,乙醛酸循环途径可看作三羧酸循环的支路和中间产物的补给途径,在菌体生长期之后,进入谷氨酸生成期,为了大量生成、积累谷氨酸,最好没有异柠檬酸裂解酶催化反应,封闭乙醛酸循环,第四节 谷氨酸生物合成的调节机制,优先合成与反馈调节,生物素的调节作用,优先合成,谷氨酸比天冬氨酸优先合成,谷氨酸合成过量后,就会抑制和阻遏自身的合成途径,使代谢转向合成天冬氨酸,柠檬酸合成酶的调节,柠檬酸合成酶是三羧酸循环的关键酶,除受能荷调节外,还受谷氨酸的反馈阻遏和顺乌头酸的反馈抑制,一、优先合成与反馈调节,-,酮戊二酸脱氢酶的调节,在谷氨酸产生菌中,,-,酮戊二酸脱氢酶活性微弱,谷氨酸脱氢酶的调节,谷氨酸对谷氨酸脱氢酶存在着反馈抑制和反馈阻遏,-,酮戊二酸合成后由于,-,酮戊二酸脱氢酶活性微弱,谷氨酸脱氢酶的活力很强,故优先合成谷氨酸,Glc,丙酮酸,草酰乙酸,CO,2,天门冬氨酸(,Asp,),AC-coA,CO,2,羧化酶,柠檬酸,顺乌头酸,异柠檬酸,-,酮戊二酸,Glu,反馈抑制,谷氨酸,脱氢酶,-,酮戊二酸,脱氢酶,合成酶,反馈阻遏,Glu,产生菌主要生理生化特性,需氧,生物素缺陷型,bio,-,有乙醛酸循环,羧化酶活性强(,bio,作为辅酶),柠檬酸、异柠檬酸、谷氨酸脱氢酶活性高,,Glu,合成中存在正常反馈阻遏和反馈抑制。菌体细胞膜通透性差,不利于,Glu,胞外分泌。,二、生物素对代谢的调控作用,生物素对,CO2,固定反应的影响,生物素是丙酮酸羧化酶的辅酶,参与,CO2,固定反应,据报道,生物素大过量时(,100,g/L,以上),,CO2,固定反应可提高,30%,。,生物素对糖代谢速率的影响,生物素充足条件下,丙酮酸以后的氧化活性虽然也有提高,但由于糖降解速率显著提高,打破了糖降解速率与丙酮酸氧化速率之间的平衡,丙酮酸趋于生成乳酸的反应,因而会引起乳酸的溢出,生物素对乙醛酸循环的影响,乙醛酸循环的关键酶异柠檬酸裂解酶受葡萄糖、琥珀酸阻遏,为醋酸所诱导。在低浓度生物素条件下,因琥珀酸氧化能力降低而积累的琥珀酸就会反馈抑制该酶的活性,并阻遏该酶的合成,乙醛酸循环基本上是封闭的,代谢流向异柠檬酸,-,酮戊二酸谷氨酸的方向高效率地移动。,生物素控制磷脂的合成,使用生物素缺陷型菌株进行谷氨酸发酵,通过限制发酵培养基中生物素的浓度控制脂肪酸生物合成,从而控制磷脂的合成,作用机制:生物素作为催化脂肪酸生物合成最初反应的关键酶乙酰,CoA,羧化酶的辅酶,参与了脂肪酸的合成,进而影响磷脂的合成。当磷脂合成减少到正常量的一半左右时,细胞变形,谷氨酸向膜外漏出,积累于发酵液中,控制生物素添加量使菌种生产,Glu,高浓度,bio,增强羧化酶活性,促进羧化反应利于,Glu,合成。低浓度,bio,降低裂解酶活性,使菌体生长后关闭乙醛酸循环,使底物流向,Glu,合成,低浓度,bio,使膜磷脂合成缺陷,增加膜通透性,利于,Glu,胞外分泌,解除反馈调节,利于,Glu,合成并大量积累。,添加亚适量,,5-10g/L,培养基,生产,Glu,培养前期,,bio,充足,存在乙醛酸循环,中间物质和能量充足,长细胞,膜磷脂合成正常,正常反馈调节,不积累,Glu,,细胞形态正常。,8hr,Glu,非积累型细胞,Glu,积累型细胞,培养中后期,,bio,浓度渐低,乙醛酸途径减弱直至关闭,膜磷脂合成缺陷,膜透性增强,分泌,Glu,,解除反馈调节,大量积累,Glu,,细胞形态异常,未溶解。,第五节,Lys,代谢控制发酵,生产菌种,谷氨酸棒杆菌(,C.glutamicum,),黄色短杆菌,(B.flavum),乳糖发酵短杆菌,(B.lactofermentum),2,、谷氨酸棒杆菌、黄色短杆菌,Lys,合成途径及正常调控机制,Asp,天冬氨酸,Asp,激酶,天冬氨酸,-P,天冬氨酸,-,半醛,高丝氨酸,二氢吡啶,-2,6-,二羧酸,O-,琥珀酰,-,高丝氨酸,蛋氨酸,(Met),高丝氨酸,-P,苏氨酸(,Thr,),异亮氨酸(,Ile,),Thr,脱氢酶,赖氨酸,(Lys),Hse,脱氢酶,DDP,合成酶,合成酶,Asp,三分支途径优先合成,Met,,后合成,Thr,、,Ile,,最后合成,Lys,Thr,和,Lys,对,Asp,激酶有协同反馈抑制,Thr,对,Hse,脱氢酶有反馈
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6