资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
第11页 / 共22页
第12页 / 共22页
第13页 / 共22页
第14页 / 共22页
第15页 / 共22页
第16页 / 共22页
第17页 / 共22页
第18页 / 共22页
第19页 / 共22页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Point and Interval Estimationwith Confidence,Another Spectacular Power Point,Presentation,Point Estimates,Definition:,A single number that is based on sample data,and represents a reasonable value of the characteristic of interest.,Things Like:,xsM,-The simplest approach to estimating a population value.,Lets Look at an Example,A recent survey asked high school seniors how many hours they spent on line each day.Find the point estimate of,with the data below.,4 7.25 5 5.25 6.25,6.25 4.5 3 .5 4.25,What could we use to estimate,?,M or x,Find both:,x=,46.25,=4.625,10,M=4.75,Which one is better?,Recall when it is best to use each one,Confidence Intervals,(estimating,),Things to Remember About the Distribution of x:,1)Has a normal distribution(by CLT),2)Is an unbiased estimator of,(x=),3)If permission is granted:,s=,/n,Issues with Point Estimates:if we re do the sample,will we get same stat?,Confidence Intervals,Def:the interval of reasonable values of the characteristic of interest,Pattern for the formula:(whats on AP test),statistic,critical value(standard deviation of stat),For Estimating:x z*(,/n),Margin of Error,Confidence Levels,Def:the success rate of the,method,used to construct the interval.,Ex:A 95%confidence interval=if we took lots of samples and found the mean over and over again,in the long run 95%of the resulting intervals would capture the true value of the parameter.,If we go through the same process with the same sample size,and z*,but different x,95%of those intervals will contain.(,CI applet,),Calculating Confidence Intervals,What is z*?,A location on the normal curve that results in the needed confidence level.,Ex:,Use Table C!,z*=1.96,-z*,z*,95%,Calculating Confidence Intervals,Lets try another z*:,What is z*?,z*=2.326,-z*,z*,98%,Critical Values,z*is also called a critical value.Any ideas why?,The area outside of the interval are called critical areas,PANIC(not at the disco),When calculating a confidence interval,remember to PANIC.,P=Parameter of interest(what you are estimating).,A=Assumptions(like 10n),N=Name the interval(x,z*,/n,),I=Interval:low to high,C=Conclusion in context,Conclusion in context:Mantra,I am,95%,confident that the true population mean of,context of problem,is contained in this interval,(confidence interval).,If this same procedure were repeated many times,then approximately 95%of all intervals created would capture the true mean of,context of problem,(confidence level).,Calculating Confidence Intervals,Lets do one already!Gosh,Suppose we need to verify the amount of active ingredient in a new drug.,is known to be.0068 grams per liter.Here are the results of 3 measurements.Find a 99%confidence interval for the true concentration.,.8403.8363.8447,Calculating Confidence Intervals,Lets PANIC:,Parameter of interest is the mean,.,Assumptions:10(3)=30,should be OK.,Name the interval:,x z*(,/n),What we need:,xz*,n,.8404 2.576 .00683,Calculating Confidence Intervals,Fill in the formula:x z*(,/n),.8404 2.576(.0068/3),.8404 .0101,Interval:.,8303 to.8505,Conclusion:,I am 99%confident that the true population mean amount of active ingredient is contained in the interval.8303 to.8505 g/L.,Calculating Confidence Intervals,Use the same problem,but do a 90%C.I.,.8404,1.645(.0068/3),.8404 .0065,.8339 to.8469,Compare the 90%to 99%,Confidence levels,90%,99%,z*,z*(,/n),Interval,Compare the 90%to 99%,Confidence levels,90%,99%,z*,1.645,2.576,z*(,/n),.0065,.0101,Interval,.8339 to.8469,.8303 to.8505,What happens to the range as the confidence level increases?,In order to be more confident you must have a wider range.,Compare the 90%to 99%,Confidence levels,90%,99%,z*,1.645,2.576,z*(,/n),.0065,.0101,Interval,.8339 to.8469,.8303 to.8505,What happens to the margin of error as the confidence level increases?,In order to be more confident you allow yourself more room to mess up!,How Intervals Behave,Higher confidence gives up“precision.,Want to have a small margin of error:,-smaller z*:again calls for lower confidence,-smaller:smaller variation among individuals,-larger n:better picture of population AKA:Law of Large Numbers,Need 4x sample size to cut m of e in half,Choosing a Sample Size,Usually decided by desired margin of error(m),Formula:m,z*(,/n),Make sure to round appropriately!,Population still needs to be 10X as big as sample!,Choosing a Sample Size,Example:From previous problem,what sample size is required to pr
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6