单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,三角形全等的条件,1.,什么样的图形是全等三角形?,2.,判定两个三角形全等要具备什么条件,?,有,三边,对应相等的,两个三角形全等。,边边边,:,有,两边,和它们,夹角,对应相等的两个三角,形全等。,边角边,:,一张教学用的三角形硬纸板不小心,被撕坏了,如图,你能制作一张与原来,同样大小的新教具?能恢复原来三角形,的原貌吗?,怎么办?可以帮帮我吗?,C,B,E,A,D,先任意画出一个,ABC,,,再画一个,A,/,B,/,C,/,,使,A,/,B,/,=AB,,,A,/,=A,,,B,/,=B,。把画好,的,A,/,B,/,C,/,剪下,放到,ABC,上,,它们全等吗?,探究,1,:任意 ABC,画一个 A/B/C/,,使A/B/AB,A/=A,B/=B:,画法:,2,、在,A,/,B,/,的同旁画,DA,/,B,/,=A,,,EB,/,A,/,=B,,,A,/,D,,,B,/,E,交于点,C,/,。,1,、,画,A,/,B,/,AB,;,A,/,B,/,C,/,就是所要画的三角形。,问:通过实验可以发现什么事实?,有两角和它们夹边对应,相等的两个三角形全等,(简写成“角边角或“ASA。,探究反映的规律是:,例题讲解:,例1.:点D在AB上,点E在AC上,BE和CD相交于,点O,AB=AC,B=C。,求证:BD=CE,证明:在,ADC,和,AEB,中,A=A,(公共角),AC=AB,(已知),C=B,(已知),ACDABE,(,ASA,),AD=AE,(全等三角形的对应边相等),又,AB=AC,(已知),BD=CE,1.,如图,,1=2,,,3=4,求证:,AC=AD,证明:,ABD=180,3,ABC=180,4,而,3=4,(已知),ABD=ABC,在,ABD,和,ABC,中,1=2,(已知),AB=AB,(公共边),ABD=ABC,(已知),ABD ABC,(,ASA,),AC=AD,(全等三角形对应边相等),稳固练习,1,2,3,4,在,ABC,和,DEF,中,,A=D,,,B=E,,,BC=EF,,,ABC,与,DEF,全等吗?能利用角边角条件证明你的结论吗?,探究,2,A,B,C,D,E,F,例题讲解:,例1.:点D在AB上,点E在AC上,BE和CD相交于,点O,AD=AE,B=C。,求证:BD=CE,证明:在,ADC,和,AEB,中,A=A,(公共角),AD=AE,(已知),C=B,(已知),ACDABE,(,AAS,),AB=AC,(全等三角形的对应边相等),又,AD=AE,(已知),BD=CE,知识应用,1.,如图,要测量河两岸相对的两点,A,,,B,的距离,可以在,AB,的垂线,BF,上取两点,C,,,D,,使,BC=CD,,再定出,BF,的垂线,DE,,使,A,,,C,,,E,在一条直线上,这时,测得,DE,的长就是,AB,的长。为什么?,A,B,C,D,E,F,2.,如图,1=2,C=D,求证:AC=AD,在,ABD,和,ABC,中,1=2,(已知),C=D,(已知),AB=AB,(公共边),ABDABC,(,AAS,),AC=AD,(全等三角形对应边相等),证明:,1,2,1学习了ASA和AAS。,2由实践证明角边角是真命题。,3要根据题意选择适当的方法。,4证明线段或角相等,就是证明,它们所在的两个三角形全等。,小结,轴对称,引言,对称现象无处不在,从自然景观到艺术作,品,从建筑物到交通标志,甚至日常生活用品,都可,以找到对称的例子,对称给我们带来美的感受!,引出新知,探索新知,问题1如图,把一张纸对折,剪出一个图案折,痕处不要完全剪断,再翻开这张对折的纸,就得到了,美丽的窗花观察得到的窗花,你能发现它们有什么共,同的特点吗?,追问,你能举出一些轴对称图形的例子吗?,探索新知,如果一个平面图形沿一条直线折叠,直线两旁的部,分能够互相重合,这个图形就叫做轴对称图形,这条直,线就是它的对称轴这时,我们也说这个图形关于这条,直线成轴对称,共同特征:,每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合,探索新知,问题2观察下面每对图形如图,你能类比前,面的内容概括出它们的共同特征吗?,追问,1,你能再举出一些两个图形成轴对称的例子吗?,探索新知,把一个图形沿着某一条直线折叠,如果它能够与另,一个图形重合,那么就说这两个图形关于这条直线成,轴对称,这条直线叫做对称轴,折叠后重合的点是对,应点,叫做对称点,两者的区别:,轴对称图形指的是一个图形沿对称轴折叠后这个图,形的两局部能完全重合,而两个图形成轴对称指的是两,个图形之间的位置关系,这两个图形沿对称轴折叠后能,够重合,探索新知,追问,2,你能结合具体的图形说明轴对称图形和两个,图形成轴对称有什么区别与联系吗,?,两者的联系:,把成轴对称的两个图形看成一个整体,它就是一个,轴对称图形把一个轴对称图形沿对称轴分成两个图,形,这两个图形关于这条轴对称,探索新知,追问,2,你能结合具体的图形说明轴对称图形和两个,图形成轴对称有什么区别与联系吗,?,追问,1,你能说明其中,的道理吗?,探索新知,问题,3,如图,,ABC,和,A,B,C,关于直线,MN,对称,点,A,B,C,分别是点,A,,,B,,,C,的对称点,线,段,AA,,,BB,,,CC,与直线,MN,有什么关系?,A,B,C,M,N,P,A,B,C,探索新知,追问2上面的问题说明“如果ABC 和,ABC关于直线MN 对称,那么,直线MN 垂直,线段AA,BB和CC,并且直线MN 还平分线段,AA,BB和CC如,果将其中的“三角形改为,“四边形“五边形其,他条件不变,上述结论还成,立吗?,A,B,C,M,N,P,A,B,C,经过线段中点并且垂直,于这条线段的直线,叫做这,条线段的垂直平分线,探索新知,问题,3,如图,,ABC,和,A,B,C,关于直线,MN,对称,点,A,B,C,分别是点,A,,,B,,,C,的对称点,线,段,AA,,,BB,,,CC,与直线,MN,有什么关系?,A,B,C,M,N,P,A,B,C,探索新知,追问,3,你能用数学语言概括前面的结论吗?,成轴对称的两个图形的性质:,如果两个图形关于某条,直线对称,那么对称轴是任,何一对对应点所连线段的垂,直平分线即对称点所连线,段被对称轴垂直平分;对称,轴垂直平分对称点所连线段,A,B,C,M,N,P,A,B,C,结论:,直线l 垂直线段AA,BB,,直线l平分线段AA,BB或直,线l 是线段AA,BB的垂直平分,线,探索新知,问题4以下图是一个轴对称图形,你能发现什么结,论?能说明理由吗?,A,B,l,A,B,追问你能用数学语言概括前面,的结论吗?,探索新知,问题4以下图是一个轴对称图形,你能发现什么结,论?能说明理由吗?,A,B,l,A,B,轴对称图形的性质:,轴对称图形的对称轴,是任何,一对对应点所连线段的垂直平分线,探索新知,问题4以下图是一个轴对称图形,你能发现什么结,论?能说明理由吗?,A,B,l,A,B,课堂练习,练习1如下图的每个图形是轴对称图形吗?如,果是,指出它的对称轴,课堂练习,练习2如下图的每幅图形中的两个图案是轴对称,的吗?如果是,试着找出它们的对称轴,并找出一对对称点,1本节课学习了哪些主要内容?,2轴对称图形和两个图形成轴对称的区别与联系是,什么?,3成轴对称的两个图形有什么性质?轴对称图形有,什么性质?我们是怎么探究这些性质的?,课堂小结,教科书习题,13,.,1,第,1,、,2,、,3,、,4,、,5,题,布置作业,