,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,人教,B,版高中数学,必修,5,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,同学们,,,再见,!,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,(人教B)高二数学必修53,3.1.1,不等关系与不等式,高中数学必修,5,第三章 不等式,3.1.1 不等关系与不等式高中数学必修5第三章 不等式,目标定位,难点:,正确理解题意并列出不等式,.,【,学习目标,】,1.,能用不等式,(,组,),表示实际问题的不等关系;,2.,学会用作差法比较两实数的大小,【重、难点】,重点:,用作差法比较两实数的大小,.,学习目标和重难点,目标定位难点:正确理解题意并列出不等式.【学习目标】1.,知识链接,不等式中常用的符号语言,不等式中常用符号语言:,大于,小于,大于等于,小于等于,至多,至少,不少于,不多于,知识链接不等式中常用的符号语言不等式中常用符号语言:大于小于,新知探究,问题,1.,某人为自己制定的月支出的计划中,规定手机话费不超,过,150,元他所选用的中国电信卡的收费标准为:,求这个人月通话时间,(,记为,x,分钟,),的取值范围,月租费,每分钟通话费,中国电信卡,(一)不等关系的表示,新知探究问题1.某人为自己制定的月支出的计划中,规定手机话,新知探究,(一)不等关系的表示,新知探究(一)不等关系的表示,新知探究,问题,3,.,观察由上述问题得到的关系式,它们有什么共同特点?,我们,怎么来定义不等关系?,(一)不等关系的表示,新知探究问题3.观察由上述问题得到的关系式,它们有什么共同,例,1.,某种杂志原以每本,2.5,元的价格销售,可以售出,8,万本据,市场调查,若单价每提高,0.1,元,销售量就可能相应减少,2 000,本若把提价后杂志的定价设为,x,元,怎样用不等式表示销售的,总收入仍不低于,20,万元呢?,(一)不等关系的表示,新知探究,例1.某种杂志原以每本2.5元的价格销售,可以售出8万本,新知探究,变式,1.,某用户计划购买单价分别为,60,元、,70,元的单片软件和盒,装磁盘,使用资金不超过,500,元,根据需要,软件至少买,3,片,,磁盘至少买,2,盒问:软件数与磁盘数应满足什么条件?,(一)不等关系的表示,新知探究变式1.某用户计划购买单价分别为60元、70元的单,(二)比较大小,问题,1,在数轴上,如果表示实数,a,和,b,的两个点分别为,A,和,B,,,则点,A,和点,B,在数轴上的位置与实数,a,和,b,的大小有什么关系?,新知探究,(二)比较大小问题1在数轴上,如果表示实数a和b的两个点分,问题,2,数学中如何比较两个数的大小?,新知探究,(二)比较大小,问题2数学中如何比较两个数的大小?新知探究(二)比较大小,新知探究,(二)比较大小,新知探究(二)比较大小,新知探究,(二)比较大小,新知探究(二)比较大小,【解题反思】,用做差法比较两个实数的大小的一般步骤,是什么?,答:,作差法比较两实数,(,代数式,),大小的一般步骤是:,作差,变形,判断符号,结论,即,“,三步一结,”,新知探究,(二)比较大小,【解题反思】用做差法比较两个实数的大小的一般步骤答:作差法比,两边一对角,新知探究,两边一对角新知探究,例,3,.,当,p,,,q,都是正数且,p,q,1,时,试比较代数式,(,px,qy,),2,与,px,2,qy,2,的大小,新知探究,(二)比较大小,例3.当p,q都是正数且pq1时,试比较代数式(px,【解题反思】,作差法比较大小时,变形技巧是什么?,答,:,作差后要进行变形,变形的目的是容易判断差的符号,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式,新知探究,(二)比较大小,【解题反思】作差法比较大小时,变形技巧是什么?答:作差后要,新知探究,(二)比较大小,新知探究(二)比较大小,新知探究,(,三,),不等式在生活中的应用,例,4,建筑设计规定,民用住宅的窗户面积必须小于地板面积但按采光标准,窗户面积与地板面积的比值应不小于,10%,,且这个比值越大,住宅的采光条件越好试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由,新知探究(三)不等式在生活中的应用例4建筑设计规定,民用住,新知探究,(,三,),不等式在生活中的应用,新知探究(三)不等式在生活中的应用,新知探究,(,三,),不等式在生活中的应用,【解题反思】,如何应用不等式求解生活中的问题?,答:,其关键是能用数学语言表示出实际问题中的数量关系用不等式,(,组,),表示实际问题中的不等关系时,,(1),要先读懂题意,设出未知量;,(2),抓关键词,找到不等关系;,(3),用不等式表示不等关系,新知探究(三)不等式在生活中的应用【解题反思】如何应用不等式,新知探究,(,三,),不等式在生活中的应用,新知探究(三)不等式在生活中的应用,新知探究,(,三,),不等式在生活中的应用,新知探究(三)不等式在生活中的应用,(人教B)高二数学必修53,