单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,光催化分解污染物的研究进展,报告人:杨金辉,导师:李灿 院士/研究员,Seminar,2008-05-27,光催化分解污染物的研究进展报告人:杨金辉导师:李灿,1,结论与展望,文献总结及介绍,光催化发展及应用概况,背景及原理介绍,报告内容,结论与展望,2,未来50年人类面临的10大问题,Energy,Water,Food,Environment,Poverty,Terrorism&War,Disease,Education,Democracy,Population,未来50年人类面临的10大问题Energy,3,半导体光催化机理,半导体光催化机理,4,光催化的发展概,况,1.1972年,日本Fujishima和 Honda在Nature上报道在光辐射的TiO,2,半导体电极和金属电极组成的电池中,可持续发生水 的氧化还原反应,产生H,2,。,2.1976年Garey用,TiO,2,光催化剂脱除了多氯联苯中的氯,1977年Frank光催化氧化CN,-,为OCN,-,,光催化技术在分解污染物的应用研究开始启动。,3.近十几年来,半导体光催化技术在降解污染物等方面的应用研究发展迅速,纳米光催化成为国际上最活跃的研究领域之一。,光催化的发展概况1.1972年,日本Fujishima和 H,5,光催化文献分布,1972-2008:SCI 文献总数 26409,其中:,TiO,2,11485 占43%,From ISI analysis,光催化活性高,化学性质稳定,无毒,原料来源丰富,只吸收紫外光,当前最有潜力的纳米光催化剂,光催化文献分布1972-2008:SCI 文献总数 264,6,有机污染物的处理,(90),*,烃,卤代烃,羧酸,染料,含氮有机物,有机磷杀虫剂,表面活性剂,,,无机污染物的处理,(25),*,1.,光催化能够解决,Cr,6+,、Hg,2+,、Pb,2+,等重,金属子的污染问题,2.,光催化还可分解转化其它无机污染物,如,CN,-,、NO,2,-,、H,2,S、SO,2,NO,x,等,光催化降解污染物的,应用,*Data from USEPA(美国环保局),有机污染物的处理(90)*光催化降解污染物的应用*D,7,光催化降解有机物应用领域,光催化降解有机物应用领域,8,GaAs,(n,p),0,-0.5,-1.0,-1.5,+0.5,+1.0,+1.5,+2.0,+2.5,+3.0,+3.5,+4.0,CdS,(n),ZnO,(n),WO,3,(n),SnO,2,(n),TiO,2,(n),E=1.4eV,2.5eV,3.2eV,3.2eV,3.8eV,3.2eV,-2H,+,/H,2,0,-1.0,+1.0,+2.0,+3.0,+4.0,-Cl,2,/2Cl,-,(1.40eV),-O,3,/O,2,+H,2,O(2.07),-F,2,/2F,-,(2.87),(NHE),有代表性的光催化半导体材料及其能带,A.Hagfeldt,M.Grtzel.,Chem.Rev.,95,49(1995).,GaAs0-0.5-1.0-1.5+0.5+1.0+1.5+,9,光催化降解污染物的研究,提高,TiO,2,的活性:形貌,结构,尺寸,.,延长光谱范围:掺杂,N,S,B,C,表面修饰:担载,染料敏化,复合材料:如,CdS/TiO,2,TiO,2,/SiO,2,TiO2/SnO2,CdS/LaMnO3,新型材料开发:量子点,.,机理研究,TiO,2,及其他,硫化物,复合物,新型材料,光催化降解污染物的研究提高TiO2的活性:形貌,结构,尺寸,10,H.X.Li,Y.F.Lu,et al.,J,.Am.Chem.Soc,.,129,8406(2007).,a f:1/24 14天,形貌,-,TiO,2,a c d e f,降解苯酚活性,无模板水热合成,活性高可能是中孔反射更多紫外光,H.X.Li,Y.F.Lu,et al.,J.,11,wavelength/nm,Absorbance/%,TiO,2-x,N,x,R.Asahi,et al.,science,293,269(2001).,Photocatalytic decomposition of CH,3,CHO,Optical absorption spectra,掺杂至可见区,TiO,2-x,N,x,TiO,2,wavelength/nmAbsorbance/%TiO2-,12,HIROAKI TADA,et al.,nature mater,.5,782(2006),AuCdS/TiO,2,复合半导体,HIROAKI TADA,et al.nature m,13,TiO,2,0.344 mM,S,8,S,2-,Cd,2+,AuCdS-TiO,2,ex,320-400 nm,3.7 mW,cm,-2,250 ml de-aerated EtOH,Au,1 g,3.46 mM Cd(ClO,4,),2,6H,2,O,Argon bubbled for 30 min,in the dark,At 298 k,样品制备,AuCdS/TiO,2,光沉积方法,TiO20.344 mM S8S2-Cd2+AuCdS-T,14,光催化活性,MV,2+,MV,+,+e,-,t,MV,+,(10,-4,M),t,p,(min),TiO,2,CdS/TiO,2,Au/TiO,2,AuCdS/TiO,2,1C,2C,2C,3C,AuCdS/TiO,2,光催化活性MV2+MV+,15,AuCdS/TiO,2,机理,全固态Z-scheme,电子矢量传输,AuCdS/TiO2机理全固态Z-scheme,电子矢量,16,Z.H.Kang,et al.,J.Am.Chem.Soc.,129,12090(2007).,量子点,Si,Z.H.Kang,et al.,J.Am.Che,17,R.Nakamura,K.Hashimoto,J.Am.Chem.Soc.,129,9596(2007),Ti(IV),-,O,-,Ce(III)/MCM41,MMCT双金属组合,降解异丙醇活性,R.Nakamura,K.Hashimoto,J.,18,(Ag,0.75,Sr,0.25,)(Nb,0.75,Ti,0.25,)O,3,D.F.Wang and J.H.Ye.,J.Am.Chem.Soc.,130,2724(2008).,固溶体,AgNbO,3,SiTiO,3,solid solution,能级结构分析,降解甲醛活性,(Ag0.75Sr0.25)(Nb0.75Ti0.25)O3,19,A futuristic disinfection method involves the combined use of photons and engineered nanostructures.,Of particular interest are materials and systems that use low-cost visible lamp light and sunlight to achieve sufficiently high throughput.,Moreover,we need to improve our understanding of the mechanisms,M.A.Shannon,A.M.Mayes et al,Nuture,452,301(2008),展望,A futuristic disinfection meth,20,Fujishima A,Honda K.Nature,1972,238:37,-,38,Carey J H,Lawrence J,Tosine H M.Bull.Environ.Contam.Toxical,1976,16(6):697-701,Frank S N,Bard A J.J.Phys.Chem.1977,81:1484,-,1486,Hagfeldt A,Gr,tzel M.,Chem.Rev.,1995,95:49,-68,Walden M,Lai X,Goodman D W.Science 1998,281,:1647,-1650,Esposti,S.;Dondi,D.;Fagnoni,M.;Albini,A.,Angew.Chem.Inter.Ed.,2007,46,2531-2534.,Fihri,A.;Artero,V.;Razavet,M.;Baffert,C.;Leibl,W.;Fontecave,M.,Angew.Chem.Inter.Ed.,2008,47,564-567.,Chen,X.B.;Burda,C.,J.Am.Chem.Soc.,2008,130,5018-+.,Dessombz,A.;Chiche,D.;Davidson,P.;Panine,P.;Chaneac,C.;Jolivet,J.P.,J.Am.Chem.Soc.,2007,129,5904-5909.,Elahifard,M.R.;Rahimnejad,S.;Haghighi,S.;Gholami,M.R.,J.Am.Chem.Soc.,2007,129,9552-+.,参考文献,Fujishima A,Honda K.Nature,21,Thank you,Thank you,22,K.Awazu,et al.,J.Am.Chem.Soc.,130,1676(2008).,Plasmonic photocatalyst,-TiO,2,/Ag/SiO,2,(a),TiO,2,/SiO,2,-20nm,(b),TiO,2,/Ag/SiO,2,-20nm,(c),TiO,2,/Ag/SiO,2,-5nm,K.Awazu et al.,J.Am.Chem.,23,主要有机物光催化降解反应,14,主要有机物光催化降解反应14,24,光催化氧化,特点:,设备结构简单,反应条件温和,操作条件容易控制,氧化还原性强,COD去除率高,无二次污染,可利用太阳光,TiO,2,化学稳定性高、无毒、价廉,光催化氧化特点:,25,Nature 2002,64,A general process for in situ formation of functional surface layers on ceramics,Nature 2002,64A general proces,26,测试条件,气体浓度,放入涂料板前,放入涂料板后,一天,两天,五天,七天,去除效率(%),氨气(mg/m,3,),1.93,0.60,0.32,0.22,0.18,91,甲醛(mg/m,3,),0.90,0.43,0.21,0.13,0.07,92,苯(mg/m,3,),0.86,0.64,0.25,0.15,0.05,94,纳米TiO2光催化绿色涂料对室内氨气等的降解,16,测试条件放入涂料板前放入涂料板后一天两天五天七天去除效率(%,27,低温深度反应,净化彻底,绿色能源,(4),氧化性强,(,5),广谱性,(,6),寿命长,光催化技术的优点及不足,优点:,低温深度反应净化彻底绿色能源光催化技术的优点及不足优点:,28,(4),氧化性强,(5),广谱性,(6),寿命长,光催化技术的优点及不足(续),(4)氧化性强(5)广谱性(6)寿命长光催化技术的,29,