资源预览内容
第1页 / 共97页
第2页 / 共97页
第3页 / 共97页
第4页 / 共97页
第5页 / 共97页
第6页 / 共97页
第7页 / 共97页
第8页 / 共97页
第9页 / 共97页
第10页 / 共97页
第11页 / 共97页
第12页 / 共97页
第13页 / 共97页
第14页 / 共97页
第15页 / 共97页
第16页 / 共97页
第17页 / 共97页
第18页 / 共97页
第19页 / 共97页
第20页 / 共97页
亲,该文档总共97页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第七章 大地测量坐标系统的转换,中国矿业大学环境与测绘学院,应用大地测量学,第七章 大地测量坐标系统的转换中国矿业大学环境与测绘学院 应,1,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系,(重点),第三节 不同大地坐标系统之间的转换,(重点),第四节 平面坐标系统之间的转换,(重点),第五节 局部坐标系统的选择与坐标转换,(重点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,2,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,3,第一节 我国的大地坐标系统简介,应用大地测量学,1954年北京坐标系,1980年国家大地坐标系,1954年北京坐标系(整体平差转换值),-所谓”,新54坐标系,”,第一节 我国的大地坐标系统简介 应用大地测量学 1954年北,4,应用大地测量学,7.1.1 1954年北京坐标系,7.1.2 1980年国家大地坐标系,7.1.3 1954年北京坐标系(整体平差转换值),7.1 我国的大地坐标系统简介,应用大地测量学7.1.1 1954年北京坐标系7.1,5,应用大地测量学,7.1.1 1954年北京坐标系,7.1.2 1980年国家大地坐标系,7.1.3 1954年北京坐标系(整体平差转换值),7.1 我国的大地坐标系统简介,应用大地测量学7.1.1 1954年北京坐标系7.1,6,7.1.1 1954年北京坐标系,应用大地测量学,1954年,总参测绘局在有关方面的建议与支持下,鉴于当时的历史条件,采取先将我国一等锁与前苏联远东一等锁相联接,然后以连接处呼玛,吉拉林,东宁基线网扩大边端点的前苏联1942年,普尔科沃坐标系,的坐标为起算数据,平差我国东北及东部一等锁,这样从苏联传算来的坐标系定名为1954年北京坐标系。,1954年北京坐标系实际上是前苏联1942年普尔科沃坐标系在我国的延伸,但我国坐标系的,大地点高程,(1956年黄海高程系)却与前苏联坐标系的计算基准面不同,因此严格意义上来说,二者,不是完全相同,的大地坐标系。,7.1.1 1954年北京坐标系 应用大地测量学 1,7,应用大地测量学,特点:,1954年北京坐标系属于,参心,坐标系;,采用,克拉索夫斯基椭球,参数;,多点,定位:垂线偏差由900个点解得,大地水准面差距由43个点解得;,参考椭球,定向,时令 ;,大地,原点,是前苏联的普尔科沃;,大地点,高程,是以1956年青岛验潮站求出的黄海平均海水面为基准;,高程异常,是以前苏联1955年大地水准面重新平差结果为起算值,按我国天文水准路线推算出来的;,提供的大地点成果是,局部平差,结果。,7.1.1 1954年北京坐标系,应用大地测量学特点:7.1.1 1954年北京坐标系,8,应用大地测量学,问题和缺点:,克拉索夫斯基椭球,比现代精确椭球相差过大,;,只涉及两个几何性质的椭球参数,(a和),满足不了当今理论研究和实际工作中所需四个地球椭球基本参数的要求;,处理,重力数据,时采用的是赫尔默特1901到1909年正常重力公式,与之相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的;,对应的,参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜,,在东部地区高程异常最大达到65米,全国范围平均29米;,椭球定向不明确,,椭球短轴指向既不是CIO,也不是我国的JYD1968.0;,起始子午面,不是国际时间局BIH所定义的格林尼治平均天文台子午面,给坐标换算带来一些不便和误差;,坐标系未经整体平差,而仅是局部平差成果,点位精度不高,也不均匀;,名不副实,,容易引起一些误解。,7.1.1 1954年北京坐标系,应用大地测量学问题和缺点:7.1.1 1954年北京坐标,9,应用大地测量学,1954年北京坐标系中国大陆大地水准面起伏,7.1.1 1954年北京坐标系,应用大地测量学1954年北京坐标系中国大陆大地水准面起伏,10,应用大地测量学,7.1.1 1954年北京坐标系,7.1.2 1980年国家大地坐标系,7.1.3 1954年北京坐标系(整体平差转换值),7.1 我国的大地坐标系统简介,应用大地测量学7.1.1 1954年北京坐标系7.1,11,7.1.2 1980年国家大地坐标系,应用大地测量学,特点:,1980年国家大地坐标系属,参心,大地坐标系;,采用既含几何参数又含物理参数的,四个椭球基本参数,。数值采用1975年IUGG第16届大会的推荐值;,多点,定位;,定向,明确。地球椭球短轴平行于由地球质心指向地极原点JYD1968.0方向,起始大地子午面平行于我国起始天文子午面;,大地原点,在我国中部:陕西省泾阳县永乐镇,简称西安原点;,大地点高程,以1956年青岛验潮站求出的黄海平均海水面为基准;,1980年国家大地坐标系建立后,进行了全国天文大地网,整体平差,,计算了5万余个点的成果。,7.1.2 1980年国家大地坐标系 应用大地测量学特点:,12,应用大地测量学,1980年国家大地坐标系中国大陆大地水准面起伏,7.1.2 1980年国家大地坐标系,应用大地测量学1980年国家大地坐标系中国大陆大地水准面,13,7.1.2 1980年国家大地坐标系,应用大地测量学,新问题:,原来的各种关于椭球参数的用表均要变更,低等点要重新平差,编撰新的三角点成果表,地形图图廓线和方里网线位置发生变化,并引起地形图内地形、地物相关位置的改变,新形势下1980年国家大地坐标系的地极原点JYD1968.0已不能适应当代建立高精度天文地球动力学系带要求。,7.1.2 1980年国家大地坐标系 应用大地测量学新问题,14,应用大地测量学,7.1.1 1954年北京坐标系,7.1.2 1980年国家大地坐标系,7.1.3 1954年北京坐标系(整体平差转换值),7.1 我国的大地坐标系统简介,应用大地测量学7.1.1 1954年北京坐标系7.1,15,7.1.3 1954年北京坐标系(整体平差转换值,),应用大地测量学,它是在1980年国家大地坐标系的基础上,,改变IUGG1975年椭球至克拉索夫斯基椭球,,通过在空间三个坐标轴上进行平移而来的。因此,其坐标值仍体现了,整体平差,的特点,精度和1980年国家大地坐标系相同,克服了1954年北京坐标系局部平差的缺点;其,坐标轴,和1980年国家大地坐标系坐标轴相互平行,所以它的定向明确;它的,椭球参数,恢复为1954年北京坐标系的椭球参数,从而使其坐标值和1954年北京坐标系局部平差坐标值相差较小。,7.1.3 1954年北京坐标系(整体平差转换值) 应用大,16,应用大地测量学,特点:,属,参心,大地坐标系;长短轴采用,克拉索夫斯基,椭球参数;,多点,定位,参心虽和1954年北京坐标系参心不相一致,但十分接近;,定向,明确,与1980年国家大地坐标系的定向相同;,大地原点,与1980年国家大地坐标系相同,但大地,起算数据,不同;,大地点高程基准,是以1956年青岛验潮站求出的黄海平均海水面为基准;,提供坐标是1980年国家大地坐标系,整体平差,转换值,精度一致;,用于,测图坐标系,,对于1:5万以下比例尺测图,新旧图接边,不会产生明显裂痕。,7.1.3 1954年北京坐标系(整体平差转换值,),应用大地测量学特点:7.1.3 1954年北京坐标系(整,17,应用大地测量学,三个坐标系的关系如下图:,7.1.3 1954年北京坐标系(整体平差转换值,),应用大地测量学三个坐标系的关系如下图:7.1.3 195,18,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,19,第二节 大地坐标与三维直角坐标的换算关系,应用大地测量学,空间大地直角坐标(X,Y,Z)与空间大地坐标(B,L,H)是属于,同一个坐标系统,下的两种,不同的坐标表示方式,,它们之间存在着唯一的数学,”换算“,关系。,第二节 大地坐标与三维直角坐标的换算关系 应用大地测量学,20,第二节 大地坐标与三维直角坐标的换算关系,应用大地测量学,1、由(B,L,H)求(X,Y,Z),(7-1)、,(2-4),第二节 大地坐标与三维直角坐标的换算关系 应用大地测量学1、,21,第二节 大地坐标与三维直角坐标的换算关系,应用大地测量学,2、由(X,Y,Z)求(B,L,H),迭代公式:,(7-2),求解大地纬度B需要迭代计算,初始值(7-3),第二节 大地坐标与三维直角坐标的换算关系 应用大地测量学2、,22,第二节 大地坐标与三维直角坐标的换算关系,应用大地测量学,2、由(X,Y,Z)求(B,L,H),不用迭代的计算公式:,例题:,P212,。,第二节 大地坐标与三维直角坐标的换算关系 应用大地测量学2、,23,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点、难点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点、难点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,24,第三节 不同大地坐标系统之间的转换,应用大地测量学,对于不同的参数椭球,椭球的,定位,和,定向,不同,相应的大地坐标系统是不同的。实际应用中,需要进行不同大地坐标系统之间的转换。,不同大地坐标系统之间的转换分为,不同空间直角坐标,的转换和,不同大地坐标,的转换。,第三节 不同大地坐标系统之间的转换 应用大地测量学,25,应用大地测量学,7.3.1 不同空间直角坐标系的转换,7.3.2 不同大地坐标系的转换,7.3.3 其他转换方法,7.3 不同大地坐标系统之间的转换,应用大地测量学7.3.1 不同空间直角坐标系的转换7.,26,应用大地测量学,7.3.1 不同空间直角坐标系的转换,7.3.2 不同大地坐标系的转换,7.3.3 其他转换方法,7.3 不同大地坐标系统之间的转换,应用大地测量学7.3.1 不同空间直角坐标系的转换7.,27,7.3.1 不同空间直角坐标系的转换,应用大地测量学,(一)欧勒角,不同空间直角坐标系的转换,包括三个坐标轴的,平移,和坐标轴的,旋转,,以及两个坐标系的,尺度比,参数,坐标轴之间的三个旋转角叫欧勒角。,7.3.1 不同空间直角坐标系的转换 应用大地测量学(一),28,7.3.1 不同空间直角坐标系的转换,应用大地测量学,(一)欧勒角,(1)OZ1轴不动,绕其将0X,1,、OY,1,旋转,z,角,旋转后的坐标轴OX,1,、OY,1,变为OX,0,、OY,0,;,(2)绕OY,0,轴将0Z,1,、OX,0,旋转,y,角,旋转后的坐标轴OZ,1,、OX,0,变为OZ,0,、OX,2,;,(3)绕OX,2,轴将0Z,0,、OY,0,旋转,x,角,旋转后的坐标轴OZ,0,、OY,0,变为OZ,2,、OY,2,;,旋转变换公式:,(7-6)、(7-7)、(7-8),若两套坐标系原点一致,坐标轴互不平行,其欧拉角为,x,、,y,、,z,,,则将O-X,1,Y,1,Z,1,转换为O-X,2,Y,2,Z,2,的步骤为:,7.3.1 不同空间直角坐标系的转换 应用大地测量学(一),29,应用大地测量学,(二)三参数法,三参数坐标转换公式是在假设两坐标系间,各坐标轴相互平行,,轴系间,不存在欧勒角,的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。,(7-9),7.3.1 不同空间直角坐标系的转换,应用大地测量学 (二)三参数法7.3.1 不同空间直角坐,30,应用大地测量学,(三)七参数法,用七参数进行空间直角坐标转换有,布尔莎公式,,,莫洛琴斯基公式,和,范氏公式,等。下面给出布尔莎七参数公式:,(7-10),7.3.1 不同空间直角坐标系的转换,优点:,转换结果,精度较高,。,实际应用中舍弃不显著的参数,如个别欧拉角,选择四、五、六个参数进行转换。,注意:,剔除误差较大的公共点!,应用大地测量学 (三)七参数法7.3.1 不同空间直角坐,31,应用大地测量学,(三)七参数法,7.3.1 不同空间直角坐标系的转换,四参数法,:,局部地区应用七参数法球的的转换参数,尤其是平移参数的精度不高,公共点坐标小的变化会引起转换参数的交大变化。,局部地区,选取测区内一公共点的坐标作为“原点”,分别求出各点对原点的坐标差值。利用公共点的坐标差值求解转换参数。,(公式7-11),实际数据计算表明,这种方法的转换精度优于七参数法。,应用大地测量学 (三)七参数法7.3.1 不同空间直角坐,32,应用大地测量学,(四)坐标转换多项式回归模型,坐标转换七参数公式属于,相似变换模型,。大地控制网中的系统误差一般呈区域性,当,区域较小,时,区域性的系统误差被相似变换参数,拟合,,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对,全国或一个省区范围,内的坐标转换,可以采用,多项式回归模型,,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。,两种不同空间直角坐标系转换时,,坐标转换的精度,取决于坐标转换的,数学模型,和求解转换系数的,公共点坐标精度,,此外,还与,公共点的分布,有关。鉴于地面控制网系统误差在不同区域并非是一个常数,所以采用,分区进行坐标转换,能更好地反映实际情况,提高坐标转换的精度。,7.3.1 不同空间直角坐标系的转换,应用大地测量学 (四)坐标转换多项式回归模型7.3.1,33,应用大地测量学,7.3.1 不同空间直角坐标系的转换,7.3.2 不同大地坐标系的转换,7.3.3 其他转换方法,7.3 不同大地坐标系统之间的转换,应用大地测量学7.3.1 不同空间直角坐标系的转换7.,34,7.3.2 不同大地坐标系的转换,应用大地测量学,不同大地坐标系的转换是指,椭球元素及其定位不同,的两个大地坐标系统之间的坐标转换,。空间一点P对于第一个参考椭球其大地坐标为(B1,L1,H1),当椭球元素及其定位变化后,P点的大地坐标变化了(dB,dL,dH),对于变化后的第二个参考椭球P点的大地坐标为(B2,L2,H2)。显然,不同大地坐标系的转换公式为,只要求出大地坐标的,变化量,,就可以按上式进行不同大地坐标系的转换。,根据椭球元素和定位的变化推求点的大地经纬度和大地高的变化的公式,,叫做,大地坐标微分公式,。,(一)大地坐标微分公式,7.3.2 不同大地坐标系的转换 应用大地测量学,35,应用大地测量学,由第二节空间直角坐标和大地坐标的关系式(7-1)可知,点的空间大地直角坐标是椭球几何元素(,长半径a,和,扁率f,)和椭球定位元素(,B,L,H,)的函数。当椭球元素和定位元素发生变化时,点的空间大地直角坐标必然发生变化。,7.3.2 不同大地坐标系的转换,(一)大地坐标微分公式,应用大地测量学 由第二节空间直角坐标和大地坐标的关系,36,应用大地测量学,(一)大地坐标微分公式,:(7-16),(推导见P219-220),7.3.2 不同大地坐标系的转换,式中,da,df表示椭球元素的变换;dX,dY,dZ表示椭球中心的变化,即椭球定位的变化。因此,上式就是优于椭球元素和定位变化引起的点的大地坐标变化的公式,叫,大地坐标微分公式,。,应用大地测量学(一)大地坐标微分公式:(7-16) (推导,37,应用大地测量学,(一)大地坐标微分公式,布尔莎形式的,广义大地坐标微分公式,:(7-17),7.3.2 不同大地坐标系的转换,9个参数,应用大地测量学(一)大地坐标微分公式 7.3.2,38,应用大地测量学,(二)利用空间直角坐标作介质进行不同大地坐标系的转换流程,广义大地坐标微分公式转换参数有9个,与空间大地直角坐标七参数转换公式转换精度相当,但公式较为复杂。,(X1,Y1,Z1),(B1,L1,H1),(X2,Y2,Z2),(B2,L2,H2),Brusa七参数公式,椭球1参数,椭球2参数,7.3.2 不同大地坐标系的转换,应用大地测量学(二)利用空间直角坐标作介质进行不同大地坐标,39,应用大地测量学,不同大地坐标系统之间的转换与空间直角坐标转换一样,也可以采用多项式回归模型进行坐标转换。如利用公式,(7-12),,将式中的X、Y、Z替换成相应的B、L、H即可。公式右边也可以只采用B和L两个变量,分别列出B、L、H的,变化值,与B、L的多项式关系式。,7.3.1 不同空间直角坐标系的转换,(三)多项式法,应用大地测量学 不同大地坐标系统之间的转换与空间直角,40,应用大地测量学,(四)不同二维大地坐标系的转换,只要在大地坐标微分公式中,将H=0代入即得到二维大地坐标转换模型,:(7-18),7.3.2 不同大地坐标系的转换,应用大地测量学(四)不同二维大地坐标系的转换 只要在,41,应用大地测量学,7.3.1 不同空间直角坐标系的转换,7.3.2 不同大地坐标系的转换,7.3.3 其他转换方法,7.3 不同大地坐标系统之间的转换,应用大地测量学7.3.1 不同空间直角坐标系的转换7.,42,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,43,应用大地测量学,7.4.1 不同二维高斯投影平面坐标系的转换模型,7.4.2 平面坐标系统相似变换模型,7.4 平面坐标系统之间的转换,应用大地测量学7.4.1 不同二维高斯投影平面坐标系的转,44,应用大地测量学,7.4.1 不同二维高斯投影平面坐标系的转换模型,7.4.2 平面坐标系统相似变换模型,7.4 平面坐标系统之间的转换,应用大地测量学7.4.1 不同二维高斯投影平面坐标系的转,45,7.4.1 不同二维高斯投影平面坐标系的转换模型,应用大地测量学,不同大地坐标系统转换的另一思路,:将不同的大地坐标(B,L)用各自的椭球参数分别按,高斯正形投影正算公式,变换到高斯平面上,变为不同的二维高斯投影平面坐标(x,y)。此时,可以按,二维高斯投影坐标变换模型,进行坐标转换,再将转换后的高斯平面坐标按,高斯投影反算公式,变换为相应的大地坐标。,7.4.1 不同二维高斯投影平面坐标系的转换模型 应用大地,46,7.4.1 不同二维高斯投影平面坐标系的转换模型,应用大地测量学,将式(,7-20,)、(,7-17,)带入式(7-19)得到,不同二维高斯平面坐标系的转换模型,。,(7-19),由(6-1)可得:,7.4.1 不同二维高斯投影平面坐标系的转换模型 应用大地,47,应用大地测量学,7.4.1 不同二维高斯投影平面坐标系的转换模型,7.4.2 平面坐标系统相似变换模型,7.4 平面坐标系统之间的转换,应用大地测量学7.4.1 不同二维高斯投影平面坐标系的转,48,7.4.2 平面坐标系统相似变换模型,应用大地测量学,称为坐标变换的,平移,参数,m称为,尺度比,参数,称为,旋转角,参数。,优点:,原有控制网几何形状及相对关系不变。,缺点:,公共点本身可能有误差,要剔除误差大的公共点。,7.4.2 平面坐标系统相似变换模型 应用大地测量学,49,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点、难点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点、难点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,50,第五节 局部坐标系统的选择与坐标转换,应用大地测量学,按高斯正形投影6分带或3分带所建立的高斯平面坐标系统通常称为,国家统一坐标系统,。高斯投影会引起长度变形,投影带的边沿长度变形更大。,工程测量,采用国家统一坐标系统时,,控制网实测边长,应化算为高斯平面边长。,测图,时,地面长度,化算为高斯平面边长要加改正;另外,地面点如果高出椭球面一定高度,,则地面长度归算至椭球面上也要加改正。这样一来,给测图用图带来不便,有时需选择局部坐标系。,第五节 局部坐标系统的选择与坐标转换 应用大地测量学,51,应用大地测量学,7.5.1 长度变形及其容许值,7.5.2 国家统一坐标系引起的长度变形,7.5.3 工程测量坐标系的选择,7.5.4 选择独立坐标系应注意的事项,7.5 局部坐标系统的选择与坐标转换,应用大地测量学7.5.1 长度变形及其容许值7.5 局,52,应用大地测量学,7.5.1 长度变形及其容许值,7.5.2 国家统一坐标系引起的长度变形,7.5.3 工程测量坐标系的选择,7.5.4 选择独立坐标系应注意的事项,7.5 局部坐标系统的选择与坐标转换,应用大地测量学7.5.1 长度变形及其容许值7.5 局,53,7.5.1 长度变形及其容许值,应用大地测量学,(一)地面水平长度归算至参考椭球面,地面水平长度归算至国家规定的椭球面上要加如下改正:,(7-24)(4-29),式中,RA为长度所在方向的椭球曲率半径,Hm为长度所在高程面对于椭球面的高差,s为实地测量的,水平,长度。,例:Hm=1000m,s=10000m,s=-1.57m,7.5.1 长度变形及其容许值 应用大地测量学(一)地面水,54,应用大地测量学,(二)椭球面长度投影到高斯平面,椭球面上的长度投影至高斯平面要加如下的改正:,(7-25)(4-32)(6-67),式中, 为长度两端点高斯平面坐标y坐标的平均值。S为,椭球面,边长。R为边长中点处椭球平均半径。,例: =113km,S=10000m,S=+1.57m,7.5.1 长度变形及其容许值,应用大地测量学(二)椭球面长度投影到高斯平面7.5.1,55,应用大地测量学,(三)地面水平长度归算至高斯投影平面的综合变形,(7-26),式中:各符号的含义同上,,一定注意S与s属于不同的边长,。,7.5.1 长度变形及其容许值,应用大地测量学(三)地面水平长度归算至高斯投影平面的综合变,56,应用大地测量学,(四)投影长度相对变形,取S=s,R=RA=6371km,Y、H以km为单位,将,长度综合变形,公式写成相对变形的形式:,(7-27),上式表明,采用国家统一坐标系统所产生的长度综合变形与该长度,所在的,投影带内的位置,和,平均高程,有关。,我国工程测量规范和城市测量规范均对长度综合变形的容许值作出了明确规定,,选择独立坐标系时,应保证长度综合变形不超过,2.5cm/km(相对变形为1:40000),的这一原则,。,7.5.1 长度变形及其容许值,应用大地测量学(四)投影长度相对变形 7,57,应用大地测量学,7.5.1 长度变形及其容许值,7.5.2 国家统一坐标系引起的长度变形,7.5.3 工程测量坐标系的选择,7.5.4 选择独立坐标系应注意的事项,7.5 局部坐标系统的选择与坐标转换,应用大地测量学7.5.1 长度变形及其容许值7.5 局,58,7.5.2 国家统一坐标系引起的长度变形,应用大地测量学,将长度综合变形的容许值,1:4万代入相对变形公式,得,以H为纵坐标轴,,y为横坐标轴绘右图,7.5.2 国家统一坐标系引起的长度变形 应用大地测量学,59,应用大地测量学,图7-7说明,所谓,适用区,,即如果地面长度平均高程和平均横坐标值位于该区域,则长度综合变形小于1:4万。,例如1、2测区,测区中地面点的高程H和横坐标Y都满足测区所限定的范围,则不必选择独立坐标系。,而3、4、5测区位于不适用区,其长度综合变形大于1:4万,为测图方便,可以选择独立坐标系,有以下三种选择方法:,选择,H,值,保证长度综合变形小于1:4万,“3测区”可以考虑这种选择;,选择,y,值,保证长度综合变形小于1:4万,“4测区”可以考虑这种选择;,同时选择,H和y,值,保证长度综合变形小于1:4万,“5测区”可以考虑这种选择。,7.5.2 国家统一坐标系引起的长度变形,应用大地测量学图7-7说明 7.5.2 国家统一坐标,60,应用大地测量学,7.5.1 长度变形及其容许值,7.5.2 国家统一坐标系引起的长度变形,7.5.3 工程测量坐标系的选择,7.5.4 选择独立坐标系应注意的事项,7.5 局部坐标系统的选择与坐标转换,应用大地测量学7.5.1 长度变形及其容许值7.5 局,61,7.5.3 工程测量坐标系的选择,应用大地测量学,(一)选择“,抵偿高程面,”作为投影面,按高斯正形投影3度带计算平面直角坐标,如果地面高出椭球面,地面长度归算到椭球面与从椭球面投影到高斯平面,所加的两项长度改正有互相抵偿的性质。设想,改变椭球的半径,则地面点的高程随之改变。如果高程H值改变到满足长度综合变形为0,即:,则:,H为改变椭球面后,地面点至新选椭球面(抵偿高程面)的高程。若y以百公里为单位,H以米为单位,则,(7-29),7.5.3 工程测量坐标系的选择 应用大地测量学(一)选择,62,应用大地测量学,(一)选择“,抵偿高程面,”作为投影面,按高斯正形投影3度带计算平面直角坐标,设地面点平均高程为Hm,抵偿高程面至原椭球面的高程H,抵,为:,H抵 = Hm - H (7-30),(H = Hm H抵),例一:地面点横坐标y0km,地面点平均高程Hm=400m,由(7-29)计算H=0m,则H抵=400m。则所选抵偿高程面(新的椭球面)为地面平均高程面。,例二:地面点横坐标y=91km,地面点平均高程Hm=400m,由(7-29)计算H=650m,则H抵=-250m。,7.5.3 工程测量坐标系的选择,应用大地测量学(一)选择“抵偿高程面”作为投影面,按高斯正,63,应用大地测量学,(一)选择“,抵偿高程面,”作为投影面,按高斯正形投影3度带计算平面直角坐标,抵偿高程面确定后,地面点在独立坐标系中的坐标(XD、YD)与国家统一坐标系坐标(X、Y)之间的关系按如下方法计算:,选择其中一个国家大地点作为“原点”,保持它的国家统一坐标(x0,y0)不变,将其它大地点坐标(x,y)换算到抵偿高程面相应的坐标系中。公式如右所示: (7-31),7.5.3 工程测量坐标系的选择,应用大地测量学(一)选择“抵偿高程面”作为投影面,按高斯正,64,应用大地测量学,(二)保持国家统一的椭球面作投影面不变,选择“,任意投影带,”,按高斯投影计算平面直角坐标,此项选择为保持高程不变,改变高斯投影的中央子午线,地面点的,y值改变,,使之满足,即:长度综合变形为零的条件。,地面点在独立坐标系中的坐标(XD、YD)与国家统一坐标系坐标(X、Y)之间的关系按,坐标换带,方法计算。,7.5.3 工程测量坐标系的选择,应用大地测量学(二)保持国家统一的椭球面作投影面不变,选择,65,应用大地测量学,(三)选择,平均高程面,作投影面,通过,测区中心的子午线,作为中央子午线,按高斯投影计算平面直角坐标,此类情况方法为:既选择投影面,又选择投影带。选择后,保证测区中心处y0,H0,此时,长度综合变形为最小。,例四:在国家统一坐标系中,地面点横坐标y=63km,地面点平均高程Hm=800m,如何选取工程测量独立坐标系?,(1)按相对变形公式计算的综合投影变形为1/828。(2)选择独立坐标系时,首先选择过测区中心的经度为投影带的中央子午线经度L0,此时,在新选择的投影带中,测区地面点的横坐标Y0;(3)再按例一的方法选择过测区平均高程面为新的椭球面,即H抵=800m。,地面点在独立坐标系中的坐标(XD、YD)与国家统一坐标系坐标(X、Y)之间的关系按如下方法计算:,(1)换带计算。(2)按(7-31)方法计算选定坐标系的坐标值。,7.5.3 工程测量坐标系的选择,应用大地测量学(三)选择平均高程面作投影面,通过测区中心的,66,应用大地测量学,7.5.1 长度变形及其容许值,7.5.2 国家统一坐标系引起的长度变形,7.5.3 工程测量坐标系的选择,7.5.4 选择独立坐标系应注意的事项,7.5 局部坐标系统的选择与坐标转换,应用大地测量学7.5.1 长度变形及其容许值7.5 局,67,应用大地测量学,(1)矿井深度较大的矿区,井下测度长度应加以改正。,(2)对各等级控制测量,其长度应进行改正。,(3)独立坐标系测绘的地形图,不能与国家坐标系测绘的地形图接边。,(4)大面积的基础测绘不能采用独立坐标系。,7.5.4 选择独立坐标系应注意的事项,应用大地测量学(1)矿井深度较大的矿区,井下测度长度应加以,68,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS高程与局部地区大地水准面精化问题,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,69,应用大地测量学,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,7.6.3 瞬时极(真)天球坐标系与瞬时极(真)地球坐标系,7.6天球坐标系与地球坐标系的转换,应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真),70,应用大地测量学,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,7.6.3 瞬时极(真)天球坐标系与瞬时极(真)地球坐标系,7.6 天球坐标系与地球坐标系的转换,应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真),71,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,应用大地测量学,地球在日、月和其他天体引力的作用下,在绕太阳运行时,其自转轴方向并不保持恒定。地球自转轴的变化,意味着天球南北极的运动,即北天极绕北黄极(过天球中心垂直与黄道平面的直线和天球表面的交点)作缓慢的旋转运动。,天文学,中把天极的运动分解为,长周期运动,岁差,和短周期运动,章动,。,天极,位置的变化使天极有,瞬时极(真)天极,和,平天极,之分。相应的,天球赤道,也有,真,与,平,之分。天极的变化必然导致天球赤道面的变化,实际反映出,春分点位置,的变化。这样,以天球赤道面和春分点定义的天球坐标系便有了,瞬时极(真)天球坐标系,与,历元平天球坐标系,。,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系 应用,72,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,应用大地测量学,(一) 瞬时极(真)天球坐标系,原点,:地球质心。,Z轴,:瞬时北天极。,X轴,:真春分点。,Y轴,:与X轴、Z轴构成右手系。,特点,:坐标轴指向不断变化。不便于研究卫星的运动。,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系 应用,73,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,应用大地测量学,(二) 历元平天球坐标系,原点,:地球质心。,Z轴、X轴,:选择某一历元时刻的瞬时地球旋转轴和春分点方向分别扣除此瞬间章动值。,Y轴,:与X轴、Z轴构成右手系。,特点,:三轴指向不变。,例子,:选择2000年1月1.5日为历元时刻的平天球坐标系。,作用,:用于研究卫星运动等。,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系 应用,74,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,应用大地测量学,(三)两种坐标系的转换,两次旋转,(1)通过岁差旋转参数将历元平天球坐标转换为观测时刻的平天球坐标。,(2)通过章动旋转参数将观测时刻平天球坐标转换为观测时刻的瞬时极天球坐标。,岁差参数和章动参数通过天文观测求得,可从,天文年历,中查取。,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系 应用,75,应用大地测量学,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,7.6.3 瞬时极(真)天球坐标系与瞬时极(真)地球坐标系,7.6 天球坐标系与地球坐标系的转换,应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真),76,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,应用大地测量学,(一)瞬时极(真)地球坐标系,瞬时极地球坐标系即真地球坐标系。,原点,:为地球,质心,。,Z轴,:指向,瞬时,地球自转方向。,X轴,:指向瞬时赤道面和包含,瞬时,地球自转轴与平均天文台子午面之交线方向。,Y轴,:与X、Z轴构成,右手,系。,7.6.2 瞬时极(真)地球坐标系与平地球坐标系 应用大地,77,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,应用大地测量学,(二)平地球坐标系,地球瞬时自转轴在地球上随时间而变,称为,地极移动,,简称,极移,。极移使点的纬度、经度和方位角发生变化,地面点的瞬时极地球坐标不固定。实际应用中需要建立一个在地球上固定不变的坐标系-平地球坐标系。国际天文学联合会(IAU)和国际大地测量与地球物理联合会(IAG)确定:国际协议(习用)地极原点,CIO,。,原点:,地球质心。,Z轴:,国际协议地极原点CIO。,X轴:,国际时间局(BIH)定义的格林尼治子午面与地球平赤道面的交点。,Y轴:,与X、Z轴构成右手系。,我国1980年国家坐标系地极原点:,JYD1968.0,。,7.6.2 瞬时极(真)地球坐标系与平地球坐标系 应用大地,78,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,应用大地测量学,(三)两种地球坐标系之间的转换,如图7-9所示。,(7-34),7.6.2 瞬时极(真)地球坐标系与平地球坐标系 应用大地,79,应用大地测量学,7.6.1 历元平天球坐标系与瞬时极(真)天球坐标系,7.6.2 瞬时极(真)地球坐标系与平地球坐标系,7.6.3 瞬时极(真)天球坐标系与瞬时极(真)地球坐标系,7.6 天球坐标系与地球坐标系的转换,应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真),80,7.6.3 瞬时极(真)天球坐标系与瞬时极(真)地球坐标系,应用大地测量学,如图7-10所示。Gs为平格林尼治子午面对春分点的,时角,(世界时0时的格林尼治恒星时)。,(7-35),瞬时极天球与瞬时极地球坐标系之间的转换在天文测量、GPS卫星定位测量中有广泛应用。,7.6.3 瞬时极(真)天球坐标系与瞬时极(真)地球坐标系,81,第七章 大地测量坐标系统的转换,第一节 我国的大地坐标系统简介,第二节 大地坐标与三维直角坐标的换算关系(重点),第三节 不同大地坐标系统之间的转换(重点),第四节 平面坐标系统之间的转换(重点),第五节 局部坐标系统的选择与坐标转换(重点),第六节 天球坐标系与地球坐标系的转换,第七节 GPS水准高程与局部地区大地水准面精化,第七章 大地测量坐标系统的转换第一节 我国的大地坐标系统简介,82,应用大地测量学,7.7.1 GPS水准高程,7.7.2 GPS水准高程中不同坐标系的转换,7.7.3 局部地区大地水准面精化,7.7 GPS高程与局部地区大地水准面精化问题,应用大地测量学7.7.1 GPS水准高程7.7 GPS,83,应用大地测量学,7.7.1 GPS水准高程,7.7.2 GPS水准高程中不同坐标系的转换,7.7.3 局部地区大地水准面精化,7.7 GPS高程与局部地区大地水准面精化问题,应用大地测量学7.7.1 GPS水准高程7.7 GPS,84,7.7.1 GPS水准高程,应用大地测量学,为了满足经典大地测量中地面观测值归算至椭球面的需要,大地点的高程应该采用大地高程。地面点的大地高等于水准高程加上高程异常。,高程异常,按天文水准或天文重力水准方法测定,其精度为米级。这对于观测值的归算是可以满足的。,随着社会的发展与进步,为了适应现代空间技术、地球科学以及军事科学等的需要,提出了精化和改善我国,似大地水准面,的这一迫切要解决的问题。精化和改善我国似大地水准面也是现代大地测量学的任务之一。,用GPS水准方法精化和改善似大地水准面,是目前较好的一种方法。,7.7.1 GPS水准高程 应用大地测量学 为了满足,85,应用大地测量学,H,常,=H-, = H84 Hr,7.7.1 GPS水准高程,应用大地测量学H常=H-7.7.1 GPS水准高程,86,7.7.1 GPS水准高程,应用大地测量学,(1)由GPS相对定位得到三维基线向量,通过GPS网平差,得到高精度的,大地高差,。,(2)若知道网中一点或多点精确WGS-84大地坐标系的大地高程,则通过GPS网平差后,即得到各GPS点的WGS-84,大地高H84,。,(3)再通过精确水准测量得到各GPS点的,正常高Hr,。,(4)从而得到各点,高程异常,: = H84 Hr。,(5)通过各点高程异常的计算,即可确定高精度的,似大地水准面,。,这种,利用GPS和水准测量成果确定似大地水准面的方法,叫,GPS水准,。,注意事项:,局部地区,利用GPS水准精化似大地水准面,GPS网点应具有精确的WGS-84大地坐标系的大地高程,同时,GPS网要有联测的分布较均匀的多个水准高程点(,公共点,)。,(6)求GPS点的水准高程一般采用,多项式拟合法,。,7.7.1 GPS水准高程 应用大地测量学(1)由GPS相,87,GPS水准高程:多项式拟合法,正常高与大地高的关系:H,常,=H-,=H-H,常,1。,高程异常,与点位(B,L)的关系:,多项式曲面方程,2。利用公共点的高程异常与坐标(B,L)求多项式的系数A;,注意:视公共点的多少,确定多项式的系数个数。,3。用求出系数的多项式计算GPS点的高程异常,再求其水准高程。,H,常,=H-,7.7.1 GPS水准高程,应用大地测量学,GPS水准高程:多项式拟合法 正常高与大地高的关系:H常,88,应用大地测量学,7.7.1 GPS水准高程,7.7.2 GPS水准高程中不同坐标系的转换,7.7.3 局部地区大地水准面精化,7.7 GPS高程与局部地区大地水准面精化问题,应用大地测量学7.7.1 GPS水准高程7.7 GPS,89,7.7.2 GPS水准高程中不同坐标系的转换,不同的椭球参数、定位、定向参数,对应不同的大地高。从而对应不同大地坐标系高程异常的差异。,由广义变换椭球微分公式(7-17)得,对于空间某一点,不同大地坐标系的大地高程之差为:,(7-37)(7-17),应用大地测量学,7.7.2 GPS水准高程中不同坐标系的转换 不,90,7.7.2 GPS水准高程中不同坐标系的转换,例子:在不同的大地坐标系之间(WGS-84、1954年北京坐标系、1980年国家大地坐标系中任意两个),如果已经求得似大地水准面对某一椭球面的高程异常1,如何求似大地水准面对另一椭球面的高程异常2?,应用大地测量学,1.利用两套大地坐标系的公共点求两套坐标之间的平移参数(X0,Y0,Z0)、旋转参数(,x, y,z)以及椭球参数只差(da,df)共9个转换参数,,2.根据两不同椭球参数求其大地高差dH(公式7-37)然后代入求各点dH。,3.各点的2=1+dH,7.7.2 GPS水准高程中不同坐标系的转换例子:在不同的,91,应用大地测量学,7.7.1 GPS水准高程,7.7.2 GPS水准高程中不同坐标系的转换,7.7.3 局部地区大地水准面精化,7.7 GPS高程与局部地区大地水准面精化问题,应用大地测量学7.7.1 GPS水准高程7.7 GPS,92,7.7.3 局部地区大地水准面精化,确定大地水准面的方法:几何法(天文水准、卫星测高、GPS水准)、动力学法、几何与重力,联合法,。,1。以GPS水准确定的几何大地水准面作为控制;(精度高,分辨率低),2。将重力法确定的重力大地水准面(分辨率高,精度低)与之拟合,达到精化目的。,应用大地测量学,局部或区域(似)大地水准面主要采用:,移去恢复法,。,利用局部DEM、高精度GPS水准数据、高精度重力数据等,采用FFT技术,辅以多项式拟合法。,精化目的,:统一了区域高程基准,利于GPS测图一体化。,7.7.3 局部地区大地水准面精化确定大地水准面的方法:几,93,第七章 复习思考题,1。我国目前采用的大地坐标系有哪些?,2。同一大地坐标系统中大地坐标与三维直角坐标之间的关系。,3。不同大地坐标系统坐标转换(主要学会三维直角坐标之间的三参数法、七参数法)。,4。不同平面直角坐标系之间的转换(四参数法)。,5。矿区局部坐标系统的建立方法有哪几中。,6。什么是GPS水准高程?,第七章 复习思考题1。我国目前采用的大地坐标系有哪些?,94,第七章 习题,1.表7-2中,选取1,2两个点作为公共点,求坐标转换参数,然后将3,4两点的,X2,Y2转换为X1,Y1。,2.某矿区范围为东经1171511730,北纬33303345。,测区内地面高程最高为300m,最低高程为100m。井下高程为-800m。为测图方便是否需要选择独立坐标系?如何选择?,3.选做:,(1)表7-1中,如果只有1号点为公共点,求坐标转换参数,并将其余2,3,4号,点的X1,Y1,Z1转换为X2,Y2,Z2。(提示:三参数法),(2)表7-1中,如果有1,2号点为公共点,求坐标转换参数,并将1,2,3,4号点的X1,Y1,Z1转换为X2,Y2,Z2。(提示:按7-10式七参数法,保留三个平移、三个旋转角共六个参数转换。),(3)表7-1中,如果有1,2,3号点为公共点,求坐标转换参数,并将1,2,3,4号点的X1,Y1,Z1转换为X2,Y2,Z2。(提示:按7-10式七参数法。或保留三个平移、三个旋转角共六个参数按7-11式进行转换。),第七章 习题1.表7-2中,选取1,2两个点作为公共点,求,95,未来的世界 方向比努力重要, 能力比知识重要, 健康比成绩重要, 生活比文凭重要,,未来的世界,96,谢 谢!,谢 谢!,97,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6