单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,对策问题五六年级奥数,对策问题五六年级奥数,智取火柴,在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同。但不论哪种玩法,要想取胜,一定离不开用数学思想去推算。,智取火柴在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游,例1 桌子上放着60根火柴,甲、乙二人轮流每次取走13根。规定谁取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取,那么谁将获胜?,分析与解:本题采用逆推法分析。获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方,4,根,此时无论对方取,1,,,2,或,3,根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方,4,根,在倒数第三次取时,必须留给对方,8,根,由此可知,获胜方只要每次留给对方的都是,4,的倍数根,则必胜。现在桌上有,60,根火柴,甲先取,不可能留给乙,4,的倍数根,而甲每次取完后,乙再取都可以留给甲,4,的倍数根,所以在双方都采用最佳策略的情况下,乙必胜。,例1 桌子上放着60根火柴,甲、乙二人轮流每次取走13根。,在例,1,中为什么一定要留给对方,4,的倍数根,而不是,5,的倍数根或其它倍数根呢?关键在于规定每次只能取,1,3,根,,1,3,4,,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是,4,。利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么。由此出发,对于例,1,的各种变化,都能分析出谁能获胜及获胜的方法。,在例1中为什么一定要留给对方4的倍数根,而不是5的倍数根或其,例2 在例1中将“每次取走13根”改为“每次取走16根”,其余不变,情形会怎样?,分析与解:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜。因为60784,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜。,由例2看出,在每次取1n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜。,例2 在例1中将“每次取走13根”改为“每次取走16根”,例3 将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?,解:最后留给对方,1,根火柴者必胜。按照例,1,中的逆推的方法分析,只要每次留给对方,4,的倍数加,1,根火柴必胜。甲先取,只要第一次取,3,根,剩下,57,根(,57,除以,4,余,1,),以后每次都将除以,4,余,1,的根数留给乙,甲必胜。,由例,3,看出,在每次取,1,n,根火柴,取到最后一根火柴者为输的规定下,谁能做到总给对方留下(,1,n,)的倍数加,1,根火柴,谁将获胜。,有许多游戏虽然不是取火柴的形式,但游戏取胜的方法及分析思路与取火柴游戏完全相同。,例3 将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一,例4 两人从1开始按自然数顺序轮流依次报数,每人每次只能报15个数,谁先报到50谁胜。你选择先报数还是后报数?怎样才能获胜?,解:对照例,1,、例,2,可以看出,本例是取火柴游戏的变形。因为,50,(,1,5,),82,,所以要想获胜,应选择先报,第一次报,2,个数,剩下,48,个数是(,1,5,),6,的倍数,以后总把,6,的倍数个数留给对方,必胜。,例4 两人从1开始按自然数顺序轮流依次报数,每人每次只能报1,例5 1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动17格。规定将棋子移到最后一格者输。甲为了获胜,第一步必须向右移多少格?,例5 1111个空格排成一行,最左端空格中放有一枚棋子,,分析与解:本例是例,3,的变形,但应注意,一开始棋子已占一格,棋子的右面只有,1111-1,1110,(个)空格。由例,3,知,只要甲始终留给乙(,1+7=,),8,的倍数加,1,格,就可获胜。,(,111-1,),(,1,7,),1386,,,所以甲第一步必须移,5,格,还剩下,1105,格,,1105,是,8,的倍数加,1,。以后无论乙移几格,甲下次移的格数与乙移的格数之和是,8,,甲就必胜。因为甲移完后,给乙留下的空格数永远是,8,的倍数加,1,。,分析与解:本例是例3的变形,但应注意,一开始棋子已占一格,棋,例6 今有两堆火柴,一堆35根,另一堆24根。两人轮流在其中任一堆中拿取,取的根数不限,但不能不取。规定取得最后一根者为赢。问:先取者有何策略能获胜?,例6 今有两堆火柴,一堆35根,另一堆24根。两人轮流在其,分析与解:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同。,先取者在,35,根一堆火柴中取,11,根火柴,使得取后剩下两堆的火柴数相同。以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴。只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到。这样先取者总可获胜。,请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是,35,根火柴,那么先取者还能获胜吗?,分析与解:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,,例7 有3堆火柴,分别有1根、2根与3根火柴。甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜。如果采用最佳方法,那么谁将获胜?,分析与解:根据例,6,的解法,谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜。,甲先取,共有六种取法:从第,1,堆里取,1,根,从第,2,堆里取,1,根或,2,根;第,3,堆里取,1,根、,2,根或,3,根。无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜。,例7 有3堆火柴,分别有1根、2根与3根火柴。甲先乙后轮流从,练习25,1.桌上有30根火柴,两人轮流从中拿取,规定每人每次可取13根,且取最后一根者为赢。问:先取者如何拿才能保证获胜?,2.有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。如果甲先取,那么谁将获胜?,练习25,3,、有,100,根火柴,甲乙两人轮流玩火柴游戏,规定每人每次可取,10,根以内的任何火柴(包括,10,根),以谁取完火柴使对手无火柴可取者胜,如果甲先取,问谁一定能获胜?他怎样才能获胜?,3、有100根火柴,甲乙两人轮流玩火柴游戏,规定每人每次可取,4.,甲、乙二人轮流报数,甲先乙后,每次每人报,1,4,个数,谁报到第,888,个数谁胜。谁将获胜?怎样获胜?,5.,有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。如果甲后取,那么他一定能获胜吗?,4.甲、乙二人轮流报数,甲先乙后,每次每人报14个数,谁报,6.,黑板上写着一排相连的自然数,1,,,2,,,3,,,,,51,。甲、乙两人轮流划掉连续的,3,个数。规定在谁划过之后另一人再也划不成了,谁就算取胜。问:甲有必胜的策略吗?,7.,有三行棋子,分别有,1,,,2,,,4,枚棋子,两人轮流取,每人每次只能在同一行中至少取走,1,枚棋子,谁取走最后一枚棋子谁胜。问:要想获胜是先取还是后取?,6.黑板上写着一排相连的自然数1,2,3,51。甲、乙两,8,、有,9,张卡片,分别写着,1,2,3,4,5,6,7,8,9,甲乙两人轮流取,1,张,谁手上的,3,张卡片上的数字加起来的和等于,15,,谁就能取胜,问保证不败的对策是什么?,8、有9张卡片,分别写着1,2,3,4,5,6,7,8,9,此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢,此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力,