单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2017-2-5,#,信号,分析基础,信号分析基础,1,卷积分,卷积积分是一种数学方法,在信号与系统的理论研究中占有重要的地位。特别是关于信号的时间域与变换域分析,它是沟通时域频域的一个桥梁。,卷积分 卷积积分是一种数学方法,在信号与系统的,2,卷积的,物理意义,1),将,信号,x(t),分解,为许多宽度为,t,的窄条面积之和,,t=n t,时的第,n,个窄条的高度为,x(n t),,在,t,趋近于零的情况下,窄条可以看作是强度等于窄条面积的脉冲。,2.6,卷积分,t,x(t),n,t,x(n,t)t,卷积的物理意义1)将信号x(t)分解为许多宽度为 t 的窄,3,2,)在,t=n,t,时刻,窄条脉冲引起的响应为,:,x(,n,t)t h(t-,n,t),t,x(,n,t)t h(t-,n,t),0,2.6,卷积分,2)在t=nt时刻,窄条脉冲引起的响应为:tx(nt,4,3,)各脉冲引起的响应之和即为输出,y(t),t,y(t),0,2.6,卷积分,3)各脉冲引起的响应之和即为输出y(t)ty(t)02.6,5,卷积与相关,2.6,卷积分,如果,则,时域卷积定理,卷积分的傅立叶变换计算法:,卷积与相关2.6 卷积分如果则时域卷积定理卷积分的傅立叶变换,6,3),如果输入和系统特性已知,则可以推断和估计系统的输出量。,(,预测,),系统分析中的三类问题:,1),当输入、输出是可测量的,(,已知,),,可以通过它们推断系统的传输特性。,(,系统辨识,),2),当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。,(,反求,),测试,系统特性,x(t),h(t),y(t),3)如果输入和系统特性已知,则可以推断和估计系统的输出量。(,7,测试系统基本要求,1,测试系统概论,理想的测试系统应该具有单值的、确定的输入输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中以输出和输入成,线性关系,最佳。,x,y,线性,x,y,线性,x,y,非线性,测试系统基本要求 1 测试系统概论 理想的测试系统应,8,1,测试系统概论,系统输入,x(t),和输出,y(t),间的关系可以用常系数线性微分方程来描述:,线性系统,(,时域描述,),一般在工程中使用的测试装置都是线性系统。,1 测试系统概论 系统输入x(t)和输出y,9,1,测试系统概论,线性系统性质:,a),叠加性,系统对各输入之和的输出等于各单个输入的输出之和,即,若,x1(t)y1(t),,,x2(t)y2(t),则,x1(t)x2(t)y1(t)y2(t),b),比例性,常数倍输入所得的输出等于原输入所得输出的常数倍,即,:,若,x(t)y(t),则,kx(t)ky(t),1 测试系统概论 线性系统性质:a)叠加性 b)比例性,10,1,测试系统概论,c),微分性,系统对原输入信号的微分等于原输出信号的微分,即,若,x(t)y(t),则,x(t)y(t),d),积分性,当初始条件为零时,系统对原输入信号的积分等于原输出信号的积分,即,若,x(t)y(t),则,x(t)dt y(t)dt,1 测试系统概论 c)微分性 d)积分性,11,1,测试系统概论,e),频率保持性,若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号,即,若,x(t)=Acos(t+x),则,y(t)=Bcos(t+y),线性系统的这些主要特性,特别是符合叠加原理和频率保持性,在测量工作中具有重要作用。,1 测试系统概论 e)频率保持性 线性系统的这些主要,12,传递函数:,拉氏变换,(,数学定义,),:,富氏变换,(,数字计算,):,3,测试系统的动态响应特性,传递函数:拉氏变换(数学定义):富氏变换(数字计算):3,13,3,测试系统的动态响应特性,传递函数,:,直观的反映了测试系统对不同频率成分输入信号的扭曲情况。,3 测试系统的动态响应特性 传递函数:直观的反映了测试系统对,14,a),传递函数的测量,(,正弦波法,),依次用不同频率,f,i,的简谐信号去激励被测系统,同时测出激励和系统的稳态输出的幅值、相位,得到幅值比,A,i,、相位差,i,。,3,测试系统的动态响应特性,依据:频率保持性,若,x(t)=Acos(t+x),则,y(t)=Bcos(t+y),a)传递函数的测量(正弦波法)依次用不同频率fi的,15,测试,系统特性,优点:,简单,信号发生器,双踪示波器,缺点:,效率低,从系统最低测量频率,fmin,到最高测量频率,fmax,,逐步增加正弦激励信号频率,f,,记录下各频率对应的幅值比和相位差,绘制就得到系统幅频和相频特性。,测试系统特性 优点:简单,信号发生器,双踪示波器 从系统最低,16,3,测试系统的动态响应特性,3 测试系统的动态响应特性,17,测试,系统特性,案例:,音响系统性能评定,y(t)=x(t)*h(t),Y(f)=X(f)H(f),改进:,脉冲输入,/,白噪声输入,测量输出,再求输出频谱。,飞机模态分析,测试系统特性 案例:音响系统性能评定y(t)=x(t)*h(,18,b),脉冲响应函数,若装置的输人为单位脉冲,(t),,因,(t),的傅立叶变换为,1,,有:,Y(f)=H(f),,或,y(t)=F,-1,H(S),3,测试系统的动态响应特性,优点:,直观,缺点:,简单系统识别,记为,h(t),,称它为脉冲响应函数。,H(f),固频、阻尼参数,傅立叶,变换,b)脉冲响应函数 若装置的输人为单位脉冲(t),因,19,3,测试系统的动态响应特性,案例,:,镗杆,固有频率测量,3 测试系统的动态响应特性 案例:镗杆固有频率测量,20,实验:悬臂梁固有频率测量,3,测试系统的动态响应特性,实验:悬臂梁固有频率测量3 测试系统的动态响应特性,21,3,测试系统的动态响应特性,案例,:,桥梁固频测量,原理:在桥中设置一三角形障碍物,利用汽车碍时的冲击对桥梁进行激励,再通过应变片测量桥梁动态变形,得到桥梁固有频率。,3 测试系统的动态响应特性 案例:桥梁固频测量原理:在桥中设,22,c),阶跃响应函数,若系统输入信号为单位阶跃信号,即,x(t)=u(t),,则,X(s)=1/s,,此时,Y(s)=H(s)/s,3,测试系统的动态响应特性,H(f),时域波形参数识别,c)阶跃响应函数 若系统输入信号为单位阶跃信号,23,3,测试系统的动态响应特性,阶跃响应函数测量,实验求阶跃响应函数简单明了,产生一个阶跃信号,再测量系统输出就可以了。,原理:在桥中悬挂重物,然后突然剪断绳索,产生阶跃激励,再通过应变片测量桥梁动态变形,得到桥梁固有频率。,案例:,桥梁固有频率测量,3 测试系统的动态响应特性 阶跃响应函数测量,24,设测试系统的输出,y(t),与输入,x(t),满足关系,y(t)=A,0,x(t-t,0,),4,系统不失真测量条件,测试,系统特性,该系统的输出波形与输入信号的波形精确地一致,只是幅值放大了,A,0,倍,在时间上延迟了,t,0,而已。这种情况下,认为测试系统具有不失真的特性。,t,A,x(t),y(t)=A,0,x(t),y(t)=A,0,x(t-t,0,),时域条件,设测试系统的输出y(t)与输入x(t)满足关系 4 系统,25,y(t)=A,0,x(t-t,0,),Y()=A,0,e,-jt0,X(),4,系统不失真测量的条件,不失真测试系统条件的幅频特性和相频特性应分别满足,A()=A0=,常数,()=-t0,做傅立叶变换,频域定义,y(t)=A0 x(t-t0)Y()=A0e,26,1,一阶系统,5,典型系统的动态响应,测试,系统特性,温度,酒精,湿度,1 一阶系统5 典型系统的动态响应测试系统特性 温度酒精湿度,27,测试,系统特性,特征:测量滞后,阶跃响应,传递函数,测试系统特性 特征:测量滞后阶跃响应传递函数,28,测试,系统特性,一阶系统时间常数测量:,阶跃响应,0.63,测试系统特性 一阶系统时间常数测量:阶跃响应0.63,29,测试,系统特性,实验:一阶系统时间常数对测量的影响,测试系统特性 实验:一阶系统时间常数对测量的影响,30,2,二阶系统,5,典型系统的动态响应,称重,(,应变片,),F,加速度,2 二阶系统5 典型系统的动态响应称重(应变片)F加速度,31,5,典型系统的动态响应,特征:震荡,脉冲响应,传递函数,5 典型系统的动态响应特征:震荡脉冲响应传递函数,32,5,典型系统的动态响应,二阶系统参数测量,脉冲响应,/,阶跃响应函数法:,t,b,M1,M2,f,n,=1/t,b,5 典型系统的动态响应二阶系统参数测量脉冲响应/阶跃响应函数,33,5,典型系统的动态响应,传递函数法,0.707,5 典型系统的动态响应传递函数法0.707,34,5,典型系统的动态响应,阻尼系数和固频的作用,5 典型系统的动态响应阻尼系数和固频的作用,35,5,典型系统的动态响应,实验:二阶系统参数对测量的影响,5 典型系统的动态响应实验:二阶系统参数对测量的影响,36,实际测量工作中,测量系统和被测对象会产生相互作用。测量装置构成被测对象的负载。彼此间存在能量交换和相互影响,以致系统的传递函数不再是各组成环节传递函数的叠加或连乘。,6,负载效应,测试,系统特性,E,R1,R2,V,=ER2/(R2+R1),V=ER2Rm/R1(Rm+R2)+RmR2,V,Rm,令,R1=100K,R2=150K,Rm=150K,E=150V,得,:,U0=90V,U1=63V,,,误差达,28.6%,。,实际测量工作中,测量系统和被测对象会产生相,37,测试,系统特性,案例:,物料配重自动测量系统的静态参数测量,灵敏度,=y/x,非线性度,=B/A100%,回程误差,=,(hmax/A)100%,测量范围:,测试系统特性 案例:物料配重自动测量系统的静态参数测量 灵敏,38,测量过程中,除待测量信号外,各种不可见的、随机的信号可能出现在测量系统中。这些信号与有用信号叠加在一起,严重扭曲测量结果。,7,测量系统的抗干扰,测试,系统特性,测量系统,信,道,干,扰,电,磁,干,扰,电,源,干,扰,测量过程中,除待测量信号外,各种不可见的、,39,7,测量系统的抗干扰,1),电磁干扰,:,干扰以电磁波辐射方式经空间串入测,量系统。,2),信道干扰:信号在传输过程中,通道中各元件产,生的噪声或非线性畸变所造成的干扰。,2),电源干扰:这是由于供电电源波动对测量电路引,起的干扰。,一般说来,良好的屏蔽及正确的接地可去除大部分的电磁波干扰。使用交流稳压器、隔离稳压器可减小供电电源波动的影响。信道干扰是测量装置内部的干扰,可以在设计时选用低噪声的元器件,印刷电路板设计时元件合理排放等方式来增强信道的抗干扰性。,7 测量系统的抗干扰 1)电磁干扰:干扰以电磁波辐射方式经空,40,4,测量系统,其它应用:,肌电诱发电位仪,T,生理信号传导速度,60m/s-70m/s,4 测量系统其它应用:,41,