资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
第11页 / 共13页
第12页 / 共13页
第13页 / 共13页
亲,该文档总共13页全部预览完了,如果喜欢就下载吧!
点击查看更多>>
资源描述
,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,COP5992 DATA MINING TERM PROJECTRANDOM SUBSPACE METHOD+CO-TRAININGbySELIM KALAYCI,RANDOM SUBSPACE METHOD(RSM),Proposed by Ho,“The Random Subspace for Constructing Decision Forests,1998,Another combining technique for weak classifiers like Bagging,Boosting.,RSM ALGORITHM,1.Repeat for,b,=1,2,.,B,:,(a)Select an,r,-dimensional random subspace,X,from the original,p,-dimensional feature space,X,.,2.Combine classifiers,C,b,(,x,),b,=1,2,.,B,by simple majority voting to a final decision rule,MOTIVATION FOR RSM,Redundancy in Data Feature Space,Completely redundant feature set,Redundancy is spread over many features,Weak classifiers that have critical training sample sizes,RSM PERFORMANCE ISSUES,RSM Performance depends on:,Training sample size,The choice of a base classifier,The choice of combining rule(simple majority vs.weighted),The degree of redundancy of the dataset,The number of features chosen,DECISION FORESTS(by Ho),A combination of trees instead of a single tree,Assumption:Dataset has some redundant features,Works efficiently with any decision tree algorithm and data splitting method,Ideally,look for best individual trees with lowest tree similarity,UNLABELED DATA,Small number of labeled documents,Large pool of unlabeled documents,How to classify unlabeled documents accurately?,EXPECTATION-MAXIMIZATION(E-M),CO-TRAINING,Blum and Mitchel,“Combining Labeled and Unlabeled Data with Co-Training,1998.,Requirements:,Two sufficiently strong feature sets,Conditionally independent,CO-TRAINING,APPLICATION OF CO-TRAINING TO A SINGLE FEATURE SET,Algorithm:,Obtain a small set,L,of labeled examples,Obtain a large set,U,of unlabeled examples,Obtain two sets,F,1,and,F,2,of features that are sufficiently redundant,While,U,is not empty do:,Learn classifier C,1,from L based on F,1,Learn classifier C,2,from L based on F,2,For each classifier C,i,do:,C,i,labels examples from U based on F,i,C,i,chooses the most confidently predicted examples E from U,E is removed from U and added(with their given labels)to L,End loop,THINGS TO DO,How can we measure redundancy and use it efficiently?,Can we improve Co-training?,How can we apply RSM efficiently to:,Supervised learning,Semi-supervised learning,Unsupervised learning,QUESTIONS,?,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6