资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
第11页 / 共39页
第12页 / 共39页
第13页 / 共39页
第14页 / 共39页
第15页 / 共39页
第16页 / 共39页
第17页 / 共39页
第18页 / 共39页
第19页 / 共39页
第20页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
点击查看更多>>
资源描述
单击此处编辑母版文本样式,返回导航,高考总复习 数学(理),第七章立体几何,立体几何,第 七 章,第39讲,空间几何体的三视图、直观图、外表积和体积,考纲要求,考情分析,命题趋势,1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图,3会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式,4了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.,2017江苏卷,18,2016全国卷,,3,2016四川卷,13,2016全国卷,,6,2016全国卷,,9,2016山东卷,5,空间几何体的结构特征、三视图、直观图、表面积和体积在高考中每年都会考查,主要考查几何体的三视图及已知几何体的三视图求几何体的表面积和体积.,分值:5分,板 块 一,板 块 二,板 块 三,栏目导航,1,空间几何体的结构特征,(1)多面体的结构特征,多面体,结构特征,棱柱,有两个面_,其余各面都是四边形且每相邻两个面的交线都平行且相等,棱锥,有一个面是多边形,而其余各面都是有一个_的三角形,棱台,棱锥被平行于_的平面所截,截面和底面之间的部分叫做棱台.,平行,公共顶点,底面,(2)旋转体的形成,几何体,旋转图形,旋转轴,圆柱,矩形,矩形一边所在的直线,圆锥,直角三角形,一直角边所在的直线,圆台,直角梯形或等腰梯形,直角腰所在的直线或等腰梯形上下底中点连线,球,半圆或圆,直径所在的直线,2,空间几何体的三视图,(1)三视图的名称,几何体的三视图包括:_、_、_.,(2)三视图的画法,在画三视图时,重叠的线只画一条,挡住的线要画成_.,三视图的正视图、侧视图、俯视图分别是从几何体的_方、_方、_方观察几何体的正投影图,正视图,侧视图,俯视图,虚线,正前,正左,正上,3空间几何体的直观图,空间几何体的直观图常用_画法来画,其规那么是:,(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x轴,y轴的夹角为_,z轴与x轴和y轴所在平面_.,(2)原图形中平行于坐标轴的线段,直观图中仍分别_;,平行于x轴和z轴的线段在直观图中保持原长度_;,平行于y轴的线段在直观图中长度为_.,斜二测,45或135,垂直,平行于坐标轴,不变,原来的一半,4空间几何体的外表积与体积,Sh,1思维辨析(在括号内打“或“),(1)底面是正方形的四棱柱为正四棱柱(),(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥(),(3)夹在圆柱的两个平行截面间的几何体还是圆柱(),(4)用斜二测画法画水平放置的A时,假设A的两边分别平行于x轴和y轴,且A90,那么在直观图中,A45.(),(5)正方体、球、圆锥各自的三视图中,三视图均相同(),解析,(1)错误因为侧棱不一定与底面垂直,(2)错误尽管几何体满足了一个面是多边形,其余各面都是三角形,但不能保证各三角形具有公共顶点,(3)错误因为两个平行截面不能保证与底面平行,(4)错误,A,应为45或135.,(5)错误正方体的三视图由于正视的方向不同,其三视图的形状可能不同,圆锥的侧视图与俯视图显然不相同,2用任意一个平面截一个几何体,各个截面都是圆面,那么这个几何体一定是(),A圆柱B圆锥,C球体D圆柱、圆锥、球体的组合体,解析 当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面,C,3(2021全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一局部后所得,那么该几何体的体积为(),A90B63,C42D36,B,4外表积为3的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为_.,解析 设圆锥的母线为l,圆锥底面半径为r,那么rlr23,l2r,解得r1,即直径为2.,2,5某几何体的三视图如下图,其中正视图的等腰三角形腰长为2,侧视图是半径为1的半圆,那么该几何体的外表积是_.,(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐,(2)解决有关“斜二测画法问题时,一般在图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系,一空间几何体的三视图和直观图,【例1】(1)一几何体的直观图如图,以下给出的四个俯视图中正确的选项是(),B,(2)用斜二测画法画一个水平放置的平面图形的直观图为如下图的一个正方形,那么原来的图形是(),A,(3)三棱锥的俯视图与侧视图如下图,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,那么该三棱锥的正视图可能是(),C,二空间几何体的外表积和体积,(1)以三视图为载体的几何体的外表积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量,(2)多面体的外表积是各个面的面积之和;组合体的外表积注意衔接局部的处理旋转体的外表积问题注意其侧面展开图的应用,(3)假设所给定的几何体是柱体、锥体或台体等规那么几何体,那么可直接利用公式进行求解其中,等积转换法多用来求三棱锥的体积,(4)假设所给定的几何体是不规那么几何体,那么将不规那么的几何体通过分割或补形转化为规那么几何体,再利用公式求解,(5)假设以三视图的形式给出几何体,那么应先根据三视图得到几何体的直观图,然后根据条件求解,B,B,三与球有关的切、接问题,B,(2)(2021全国卷)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_.,1(2021全国卷)某多面体的三视图如下图,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长2,俯视图为等腰直角三角形该多面体的各个面中有假设干个是梯形,这些梯形的面积之和为(),A10B12,C14D16,B,2假设几何体的三视图如下图,那么该几何体的外接球的外表积为(),A34B35,C36D17,解析 由几何体的三视图知它的底面是正方形且有一侧棱垂直于底面的四棱锥,可把它补成一个长、宽、高分别为3,3,4的长方体,该长方体的外接球即为原四棱锥的外接球,所以4R2323242181634(其中R为外接球的半径),外接球外表积为S4R234,应选A,A,3点E,F,G分别是正方体ABCDA1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上以M,N,Q,P为顶点的三棱锥PMNQ的俯视图不可能是(),C,解析 当M与F重合、N与G重合、Q与E重合、P与B1重合时,三棱锥PMNQ的俯视图为A;当M,N,Q,P是所在线段的中点时,三棱锥PMNQ的俯视图为B;当M,N,Q,P位于所在线段的非端点位置时,存在三棱锥PMNQ,使其俯视图为D,应选C,错因分析:,不能借助长方体和正方体协助解题,使解题受阻,易错点不能巧妙运用长方体和正方体解题,【跟踪训练1】一个多面体的三视图如下图,那么该多面体的体积为(),A,
点击显示更多内容>>

最新DOC

最新PPT

最新RAR

收藏 下载该资源
网站客服QQ:3392350380
装配图网版权所有
苏ICP备12009002号-6